EXISTENCE FOR NONLOCAL VARIATIONAL PROBLEMS IN PERIDYNAMICS

被引:40
作者
Bellido, Jose C. [1 ]
Mora-Corral, Carlos [2 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, Dept Math, E-13071 Ciudad Real, Spain
[2] Univ Autonoma Madrid, Dept Math, Fac Sci, E-28049 Madrid, Spain
基金
欧洲研究理事会;
关键词
peridynamics; nonlocal energy; minimum energy deformations; VECTOR CALCULUS; LAPLACIAN; SOBOLEV; EQUATION; MODEL;
D O I
10.1137/130911548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue L-p spaces and in the fractional Sobolev W-s,W-p spaces, for 0 < s < 1 and 1 < p < infinity.
引用
收藏
页码:890 / 916
页数:27
相关论文
共 45 条
[1]  
Adams R.A., 2003, Sobolev spaces, V140
[2]   Variational theory and domain decomposition for nonlocal problems [J].
Aksoylu, Burak ;
Parks, Michael L. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) :6498-6515
[3]   RESULTS ON NONLOCAL BOUNDARY VALUE PROBLEMS [J].
Aksoylu, Burak ;
Mengesha, Tadele .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) :1301-1317
[4]   Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation [J].
Alali, Bacim ;
Lipton, Robert .
JOURNAL OF ELASTICITY, 2012, 106 (01) :71-103
[5]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[6]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[7]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[8]  
Andreu-Vaillo F., 2010, MATH SURVEYS MONOGR, V165
[9]  
[Anonymous], DISLOCATION DYNAMICS
[10]  
[Anonymous], 20113870J SA SAND NA