Bifurcation points and asymptotic bifurcation points of nonlinear operators in M-PN spaces

被引:4
作者
Li, Qiuying [1 ]
Zhu, Chuanxi [1 ]
Wang, Sanhua [1 ]
机构
[1] Nanchang Univ, Sch Sci, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
M-PN space; Bifurcation point; Asymptotic bifurcation point; Intrinsic value; Topological degree;
D O I
10.1016/j.na.2009.03.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the new concepts of bifurcation points and asymptotic bifurcation points of the compact continuous operator T are introduced in M-PN spaces. Some sufficient conditions for the existence of bifurcation points and asymptotic bifurcation points are obtained, and some theorems on the existence of intrinsic values are obtained. Meanwhile some theorems are generalized. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4960 / 4966
页数:7
相关论文
共 12 条
[1]  
Chang S. S., 1994, PROBABILISTIC METRIC
[2]  
Chang S S, 1989, APPL MATH MECH, V10, P495
[3]   Displacement manifold method for type synthesis of lower-mobility parallel mechanisms [J].
Li, QC ;
Huang, Z ;
Herve, JM .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2004, 47 (06) :641-650
[4]  
YANG Z, 2000, J ENG MATH, V17, P109
[5]  
Yang Z-S, 2000, J TRITICEAE CROPS, V20, P47
[6]  
ZHAO C, 2003, COLLOQ MATH, V19, P73
[7]  
ZHAO C, 1999, J MATH TECH, V15, P17
[8]  
Zhu Chuan-xi, 1995, APPL MATH MECH, V16, P179
[9]   Generalizations of Krasnoselskii's theorem and Petryshyn's theorem [J].
Zhu, CX .
APPLIED MATHEMATICS LETTERS, 2006, 19 (07) :628-632
[10]  
Zhu CX, 2000, APPL MATH MECH-ENGL, V21, P181