Assessment of Spatial and Temporal Flow Variability of the Indus River

被引:29
作者
Arfan, Muhammad [1 ]
Lund, Jewell [2 ]
Hassan, Daniyal [3 ]
Saleem, Maaz [1 ]
Ahmad, Aftab [1 ]
机构
[1] MUET Sindh, USPCAS W, Jamshoro 76090, Pakistan
[2] Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA
[3] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA
来源
RESOURCES-BASEL | 2019年 / 8卷 / 02期
关键词
climate change; Indus basin; flow regimes; Mann-Kendall; CLIMATE-CHANGE; WATER AVAILABILITY; WESTERN HIMALAYAS; GLACIERS; BASIN; SNOW; EXPANSION; TREND;
D O I
10.3390/resources8020103
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Considerable controversy exists among researchers over the behavior of glaciers in the Upper Indus Basin (UIB) with regard to climate change. Glacier monitoring studies using the Geographic Information System (GIS) and remote sensing techniques have given rise to contradictory results for various reasons. This uncertain situation deserves a thorough examination of the statistical trends of temperature and streamflow at several gauging stations, rather than relying solely on climate projections. Planning for equitable distribution of water among provinces in Pakistan requires accurate estimation of future water resources under changing flow regimes. Due to climate change, hydrological parameters are changing significantly; consequently the pattern of flows are changing. The present study assesses spatial and temporal flow variability and identifies drought and flood periods using flow data from the Indus River. Trends and variations in river flows were investigated by applying the Mann-Kendall test and Sen's method. We divide the annual water cycle into two six-month and four three-month seasons based on the local water cycle pattern. A decile indices technique is used to determine drought and flood periods. Overall, the analysis indicates that flow and temperature variabilities are greater seasonally than annually. At the Tarbela Dam, Indus River, annual mean, maximum, and minimum flows decreased steeply from 1986-2010 compared to the 1961-1985 period. Seasonal flow analysis unveils a more complex flow regime: Winter (October-March), (December-February), and spring (March-May) seasons demonstrate increasing flows along with increasing maximum temperature, whereas summer (April-September), (June-August) and autumn (September-November) showed decreasing trends in the flow. Spatial analysis shows that minimum discharge increased at the higher elevation gauging station (Kharmong, 2542 m.a.s.l.) and decreased at the lower elevation gauging station (Tarbela). Over the same timeframe, maximum and mean discharges decreased more substantially at lower elevations than at higher elevations. Drought and flood analysis revealed 2000-2004 to be the driest period in the Indus Basin for this record.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Ahsan M., 2016, INT J SCI ENG RES, V7, P1610
[2]  
[Anonymous], CLIMATE CHANGE 2001
[3]   Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications [J].
Archer, DR ;
Fowler, HJ .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2004, 8 (01) :47-61
[4]  
Arfan M., 2016, Journal of Mountain Area Research, V2, P1
[5]   CLIMATE CHANGE Shrinking glaciers under scrutiny [J].
Bamber, Jonathan .
NATURE, 2012, 482 (7386) :482-483
[6]   Potential impacts of a warming climate on water availability in snow-dominated regions [J].
Barnett, TP ;
Adam, JC ;
Lettenmaier, DP .
NATURE, 2005, 438 (7066) :303-309
[7]   Recent (1980-2009) evidence of climate change in the upper Karakoram, Pakistan [J].
Bocchiola, Daniele ;
Diolaiuti, Guglielmina .
THEORETICAL AND APPLIED CLIMATOLOGY, 2013, 113 (3-4) :611-641
[8]   The State and Fate of Himalayan Glaciers [J].
Bolch, T. ;
Kulkarni, A. ;
Kaab, A. ;
Huggel, C. ;
Paul, F. ;
Cogley, J. G. ;
Frey, H. ;
Kargel, J. S. ;
Fujita, K. ;
Scheel, M. ;
Bajracharya, S. ;
Stoffel, M. .
SCIENCE, 2012, 336 (6079) :310-314
[9]   Does the climate warming hiatus exist over the Tibetan Plateau? [J].
Duan, Anmin ;
Xiao, Zhixiang .
SCIENTIFIC REPORTS, 2015, 5
[10]  
Gardelle J, 2012, NAT GEOSCI, V5, P322, DOI [10.1038/NGEO1450, 10.1038/ngeo1450]