On the applicability of continuum scale models for ultrafast nanoscale liquid-vapor phase change

被引:2
|
作者
Chandra, Anirban [1 ]
Liang, Zhi [4 ]
Oberai, Assad A. [3 ]
Sahni, Onkar [1 ]
Keblinski, Pawel [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[3] Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[4] Calif State Univ Fresno, Dept Mech Engn, Fresno, CA 93740 USA
关键词
liquid-vapor phase change; Schrage; evaporation; condensation; continuum; nanoscale; EQUATION-OF-STATE; EVAPORATION; SIMULATION; ELECTRICITY; INTERFACE; DROPLETS; PATTERNS; FLOWS;
D O I
10.1016/j.ijmultiphaseflow.2020.103508
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Continuum methods are efficient in modeling multi-phase flow at large time and length scales, however, their applicability to nanoscale systems and processes is questionable. When mean free path and average time between atomic collisions are comparable to the characteristic length and time scales of interest, the continuum hypothesis approaches its spatial and temporal limit. Here we discuss the implications of modeling such a limiting problem involving liquid-vapor phase change using continuum equations of mass, momentum, and energy conservation. Our results indicate that, continuum conservation laws can correctly represent the dynamics of the specific problem of interest provided appropriate constitutive relations are used at liquid-vapor interfaces. We show that with the Schrage relation for phase change rates and a physically motivated expression for temperature jump, interfacial phenomena can be described quite accurately. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Liquid-Vapor Phase Equilibria and Surface Tension of Ethane As Predicted by the TraPPE and OPLS Models
    Benet, Jorge
    MacDowell, Luis G.
    Menduina, Carlos
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (12) : 5465 - 5470
  • [22] A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer
    Gong, Shuai
    Cheng, Ping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (17-18) : 4923 - 4927
  • [23] Numerical Simulation of Liquid-vapor Phase Change via a Two-phase Lattice Boltzmann Method
    Liu, Yi
    Li, Qu-cheng
    Nie, De-ming
    2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER ENGINEERING (EPE 2018), 2018, : 147 - 152
  • [24] Phase-field simulations for evaporation with convection in liquid-vapor systems
    R. Borcia
    M. Bestehorn
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 44 : 101 - 108
  • [25] Temperature and Density on the Forsterite Liquid-Vapor Phase Boundary
    Davies, E. J.
    Duncan, M. S.
    Root, S.
    Kraus, R. G.
    Spaulding, D. K.
    Jacobsen, S. B.
    Stewart, S. T.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2021, 126 (04)
  • [26] Effect of line tension on axisymmetric nanoscale capillary bridges at the liquid-vapor equilibrium
    Iwamatsu, Masao
    Mori, Hiroyuki
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [27] Experimental study of a liquid-vapor phase change cooling method for lithium-ion battery
    Zhang, Qiang
    Xi, Wenrui
    Zhang, Hongfei
    Zhang, Xiongwen
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [28] Phase-Field Simulation of Liquid-Vapor Equilibrium and Evaporation of Fluid Mixtures
    Ronsin, Olivier J. J.
    Jang, DongJu
    Egelhaaf, Hans-Joachim
    Brabec, Christoph J.
    Harting, Jens
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (47) : 55988 - 56003
  • [29] Thermodynamics of Formation and Liquid-Vapor Phase Transitions of Antimony Alloys with Selenium and Sulfur
    Volodin, Valeriy
    Nitsenko, Alina
    Trebukhov, Sergey
    Linnik, Xeniya
    Gapurov, Yerkebulan
    MATERIALS, 2024, 17 (01)
  • [30] The Liquid-Vapor Phase Transition in a Copper-Calcium System
    Volodin, V. N.
    Tuleushev, Yu Zh
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (07) : 1300 - 1305