Asymmetric Bessel-Gauss beams

被引:76
|
作者
Kotlyar, V. V. [1 ,2 ]
Kovalev, A. A. [1 ,2 ]
Skidanov, R. V. [1 ,2 ]
Soifer, V. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Laser Measurements Lab, Samara 443001, Russia
[2] SP Korolev Samara State Aerosp Univ, Natl Res Univ, Samara 443086, Russia
关键词
INVARIANT OPTICAL-FIELDS;
D O I
10.1364/JOSAA.31.001977
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c >= 0: at c = 0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c >> 1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c >> 1), making a pi/4 turn at the Rayleigh range and another pi/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator. (C) 2014 Optical Society of America
引用
收藏
页码:1977 / 1983
页数:7
相关论文
共 50 条
  • [1] Propagation and focusing of Bessel-Gauss, generalized Bessel-Gauss, and modified Bessel-Gauss beams
    Herman, RM
    Wiggins, TA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (01): : 170 - 176
  • [2] BESSEL-GAUSS BEAMS
    GORI, F
    GUATTARI, G
    PADOVANI, C
    OPTICS COMMUNICATIONS, 1987, 64 (06) : 491 - 495
  • [3] Generalized Bessel-Gauss beams
    Bagini, V
    Frezza, F
    Santarsiero, M
    Schettini, G
    Spagnolo, GS
    JOURNAL OF MODERN OPTICS, 1996, 43 (06) : 1155 - 1166
  • [4] Nonparaxial Bessel-Gauss beams
    Borghi, Riccardo
    Santarsiero, Massimo
    Porras, Miguel A.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18 (07): : 1618 - 1626
  • [5] Nonparaxial Bessel-Gauss beams
    Borghi, R
    Santarsiero, M
    Porras, MA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07): : 1618 - 1626
  • [6] Noncoaxial Bessel-Gauss beams
    Huang, Chaohong
    Zheng, Yishu
    Li, Hanqing
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (04) : 508 - 512
  • [7] Propagation of obstructed Bessel and Bessel-Gauss beams
    Litvin, Igor A.
    McLaren, Melanie G.
    Forbes, Andrew
    LASER BEAM SHAPING IX, 2008, 7062
  • [8] On the nonparaxial corrections of Bessel-Gauss beams
    El Gawhary, Omar
    Severini, Sergio
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (03) : 458 - 460
  • [9] Bessel-Gauss coherently combined beams
    Jabczynski, Jan K.
    OPTICS EXPRESS, 2024, 32 (06): : 10068 - 10076
  • [10] Imaging of generalized Bessel-Gauss beams
    Palma, C
    Cincotti, G
    Guattari, G
    Santarsiero, M
    JOURNAL OF MODERN OPTICS, 1996, 43 (11) : 2269 - 2277