Approximation of inverse operators by a new family of high-order iterative methods

被引:14
作者
Amat, S. [1 ]
Ezquerro, J. A. [2 ]
Hernandez-Veron, M. A. [2 ]
机构
[1] Polytech Univ Cartagena, Dept Appl Math & Stat, Cartagena 30203, Spain
[2] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
inverse operator; iterative method; order of convergence; semilocal convergence; heat equation; boundary value problem; CONVERGENCE;
D O I
10.1002/nla.1917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to approximate inverse operators by high-order Newton-type methods with the important feature of not using inverse operators. We analyse the semilocal convergence, the speed of convergence, and the efficiency of these methods. We determine that Chebyshev's method is the most efficient method and test it on two problems: one associated to the heat equation and the other one to a boundary value problem. We consider examples with matrices that are close to be singular and/or are badly conditioned. We check the robustness and the stability of the methods by considering situations with many steps and noised data. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 25 条
[1]  
ALTMAN M, 1961, B ACAD POL SCI SM, V9, P633
[2]   An adaptive version of a fourth-order iterative method for quadratic equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 191 (02) :259-268
[3]   Adaptive approximation of nonlinear operators [J].
Amat, S ;
Busquier, S ;
Negra, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) :397-405
[4]   Multiresolution standard form of a matrix [J].
Arandiga, F ;
Candela, VF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :417-434
[5]  
Argyros I. K., 2005, NEWTON METHODS
[6]   THE CONVERGENCE OF A HALLEY-CHEBYSHEFF-TYPE METHOD UNDER NEWTON-KANTOROVICH HYPOTHESES [J].
ARGYROS, IK .
APPLIED MATHEMATICS LETTERS, 1993, 6 (05) :71-74
[7]  
Argyros IK, 2009, APPL MATH, V36, P225
[8]  
Cormen T., 2001, Introduction to Algorithms
[9]  
Ezquerro J. A., 2005, Applied Numerical Analysis and Computational Mathematics, V2, P70, DOI 10.1002/anac.200410024
[10]   An optimization of Chebyshev's method [J].
Ezquerro, J. A. ;
Hernandez, M. A. .
JOURNAL OF COMPLEXITY, 2009, 25 (04) :343-361