Algorithms for data-driven ASR parameter quantization

被引:2
|
作者
Filali, Karim
Li, Xiao
Bilmes, Jeff
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
COMPUTER SPEECH AND LANGUAGE | 2006年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.csl.2005.10.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is fast growing research on designing energy-efficient computational devices and applications running on them. As one of the most compelling applications for mobile devices, automatic speech recognition (ASR) requires new methods to allow it to use fewer computational. and memory resources while still achieving a high level of accuracy. One way to achieve this is through parameter quantization. In this work, we compare a variety of novel. sub-vector clustering procedures for ASR system parameter quantization. Specifically, we look at systematic data-driven sub-vector selection techniques, most of which Are based on entropy minimization, and others on recognition accuracy maximization on a development set. We compare performance on two speech databases, PHONEBOOK, an isolated word speech recognition task, and TIMIT, a phonetically diverse connected-word speech corpus. While the optimal entropy-minimizing or accuracy-driven quantization methods are intractable, several simple schemes including scalar quantization with separate codebooks per parameter and joint scalar quantization with normalization perform well in their attempt to approximate the optimal clustering. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:625 / 643
页数:19
相关论文
共 50 条
  • [41] MURAME parameter setting for creditworthiness evaluation: data-driven optimization
    Marco Corazza
    Giovanni Fasano
    Stefania Funari
    Riccardo Gusso
    Decisions in Economics and Finance, 2021, 44 : 295 - 339
  • [42] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    Mathematical and Computational Forestry and Natural-Resource Sciences, 2023, 15 (01): : 7 - 16
  • [43] Data-driven parameter selection for activity estimation in nuclear spectroscopy
    Trigano, Tom
    Sepulcre, Yann
    SIGNAL PROCESSING, 2018, 151 : 99 - 106
  • [44] Data-driven simple thermal models: The importance of the parameter estimates
    Dimitriou, Vanda
    Firth, Steven K.
    Hassan, Tarek M.
    Kane, Tom
    Coleman, Michael
    6TH INTERNATIONAL BUILDING PHYSICS CONFERENCE (IBPC 2015), 2015, 78 : 2614 - 2619
  • [45] MURAME parameter setting for creditworthiness evaluation: data-driven optimization
    Corazza, Marco
    Fasano, Giovanni
    Funari, Stefania
    Gusso, Riccardo
    DECISIONS IN ECONOMICS AND FINANCE, 2021, 44 (01) : 295 - 339
  • [46] Data-driven Precompensator Tuning for Linear Parameter Varying Systems
    Butcher, Mark
    Karimi, Alireza
    Longchamp, Roland
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3854 - 3859
  • [47] Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems
    Luo, Biao
    Huang, Tingwen
    Wu, Huai-Ning
    Yang, Xiong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (11) : 2949 - 2961
  • [48] Optimal control of an SIRD model with data-driven parameter estimation
    Khan, Md. Harun-Or-Rashid
    Ahmed, Mostak
    Sarker, M. M. Alam
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
  • [49] Data-Driven Computational Methods: Parameter and Operator Estimations.
    Kantas, Nikolas
    SIAM REVIEW, 2020, 62 (04) : 992 - 993
  • [50] Data-driven parameter identification for levitation system of maglev train
    Song, Yifeng
    Tong, Laisheng
    Ni, Fei
    Lin, Guobin
    Liang, Tao
    Journal of Railway Science and Engineering, 2022, 19 (04): : 857 - 863