Algorithms for data-driven ASR parameter quantization

被引:2
|
作者
Filali, Karim
Li, Xiao
Bilmes, Jeff
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
COMPUTER SPEECH AND LANGUAGE | 2006年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.csl.2005.10.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is fast growing research on designing energy-efficient computational devices and applications running on them. As one of the most compelling applications for mobile devices, automatic speech recognition (ASR) requires new methods to allow it to use fewer computational. and memory resources while still achieving a high level of accuracy. One way to achieve this is through parameter quantization. In this work, we compare a variety of novel. sub-vector clustering procedures for ASR system parameter quantization. Specifically, we look at systematic data-driven sub-vector selection techniques, most of which Are based on entropy minimization, and others on recognition accuracy maximization on a development set. We compare performance on two speech databases, PHONEBOOK, an isolated word speech recognition task, and TIMIT, a phonetically diverse connected-word speech corpus. While the optimal entropy-minimizing or accuracy-driven quantization methods are intractable, several simple schemes including scalar quantization with separate codebooks per parameter and joint scalar quantization with normalization perform well in their attempt to approximate the optimal clustering. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:625 / 643
页数:19
相关论文
共 50 条
  • [21] Data-Driven Parameter Prediction of Water Pumping Station
    Zhang, Jun
    Yu, Yongchuan
    Yan, Jianzhuo
    Chen, Jianhui
    WATER, 2023, 15 (06)
  • [22] Data-driven modeling and parameter estimation of nonlinear systems
    Kaushal Kumar
    The European Physical Journal B, 2023, 96
  • [23] Data-driven modeling and parameter estimation of nonlinear systems
    Kumar, Kaushal
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (07):
  • [24] Data-Driven Parameter Selection and Modeling for Concrete Carbonation
    Duan, Kangkang
    Cao, Shuangyin
    MATERIALS, 2022, 15 (09)
  • [25] Modeling and Data-Driven Parameter Estimation for Woven Fabrics
    Clyde, David
    Teran, Joseph
    Tamstorf, Rasmus
    ACM SIGGRAPH / EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION (SCA 2017), 2017,
  • [26] Data-driven Parameter Tuning of IMC for Unstable Plants
    Hien Thi Nguyen
    Kaneko, Osamu
    Yamamoto, Shigeru
    2012 2ND AUSTRALIAN CONTROL CONFERENCE (AUCC), 2012, : 92 - 97
  • [27] Data-Driven Regularization Parameter Selection in Dynamic MRI
    Hanhela, Matti
    Grohn, Olli
    Kettunen, Mikko
    Niinimaki, Kati
    Vauhkonen, Marko
    Kolehmainen, Ville
    JOURNAL OF IMAGING, 2021, 7 (02)
  • [28] A data-driven methodology for the automated configuration of online algorithms
    Dunke, Fabian
    Nickel, Stefan
    DECISION SUPPORT SYSTEMS, 2020, 137
  • [29] Data-driven algorithms for dimension reduction in causal inference
    Persson, Emma
    Haggstrom, Jenny
    Waernbaum, Ingeborg
    de Luna, Xavier
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 280 - 292
  • [30] Genetic algorithms for data-driven web question answering
    Figueroa, Alejandro G.
    Neumann, Guenter
    EVOLUTIONARY COMPUTATION, 2008, 16 (01) : 89 - 125