Algorithms for data-driven ASR parameter quantization

被引:2
|
作者
Filali, Karim
Li, Xiao
Bilmes, Jeff
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
COMPUTER SPEECH AND LANGUAGE | 2006年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.csl.2005.10.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is fast growing research on designing energy-efficient computational devices and applications running on them. As one of the most compelling applications for mobile devices, automatic speech recognition (ASR) requires new methods to allow it to use fewer computational. and memory resources while still achieving a high level of accuracy. One way to achieve this is through parameter quantization. In this work, we compare a variety of novel. sub-vector clustering procedures for ASR system parameter quantization. Specifically, we look at systematic data-driven sub-vector selection techniques, most of which Are based on entropy minimization, and others on recognition accuracy maximization on a development set. We compare performance on two speech databases, PHONEBOOK, an isolated word speech recognition task, and TIMIT, a phonetically diverse connected-word speech corpus. While the optimal entropy-minimizing or accuracy-driven quantization methods are intractable, several simple schemes including scalar quantization with separate codebooks per parameter and joint scalar quantization with normalization perform well in their attempt to approximate the optimal clustering. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:625 / 643
页数:19
相关论文
共 50 条
  • [1] Data-driven evolution of data mining algorithms
    Smyth, P
    Pregibon, D
    Faloutsos, C
    COMMUNICATIONS OF THE ACM, 2002, 45 (08) : 33 - 37
  • [2] Data-driven alarm parameter optimization
    Eylen, Tayfun
    Eren, P. Erhan
    Kocyigit, Altan
    COMPUTERS & CHEMICAL ENGINEERING, 2025, 196
  • [3] Data-driven, nonlinear, formant-to-acoustic mapping for ASR
    Jackson, PJB
    Lo, BH
    Russell, MJ
    ELECTRONICS LETTERS, 2002, 38 (13) : 667 - 669
  • [4] Data-driven stochastic inversion via functional quantization
    El Amri, Mohamed Reda
    Helbert, Celine
    Lepreux, Olivier
    Zuniga, Miguel Munoz
    Prieur, Clementine
    Sinoquet, Delphine
    STATISTICS AND COMPUTING, 2020, 30 (03) : 525 - 541
  • [5] Data-driven stochastic inversion via functional quantization
    Mohamed Reda El Amri
    Céline Helbert
    Olivier Lepreux
    Miguel Munoz Zuniga
    Clémentine Prieur
    Delphine Sinoquet
    Statistics and Computing, 2020, 30 : 525 - 541
  • [6] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [7] Data-driven predictive modeling of Hubble parameter
    Salti, Mehmet
    Ciger, Emel
    Kangal, Evrim Ersin
    Zengin, Bilgin
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [8] Data-driven remanufacturing planning with parameter uncertainty
    Zhu, Zhicheng
    Xiang, Yisha
    Zhao, Ming
    Shi, Yue
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 309 (01) : 102 - 116
  • [9] A DATA-DRIVEN VLSI ARRAY FOR ARBITRARY ALGORITHMS
    KOREN, I
    MENDELSON, B
    PELED, I
    SILBERMAN, GM
    COMPUTER, 1988, 21 (10) : 30 - 43
  • [10] Direct data-driven algorithms for multiscale mechanics
    Prume, E.
    Gierden, C.
    Ortiz, M.
    Reese, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433