On the nonlinear stability of symplectic integrators

被引:11
|
作者
McLachlan, RI [1 ]
Perlmutter, M
Quispel, GRW
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[2] La Trobe Univ, Dept Math, Melbourne, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
symplectic integrators; stability; backward error analysis;
D O I
10.1023/B:BITN.0000025088.13092.7f
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, especially for nonlinear oscillators. We give conditions under which an initial condition on a compact energy surface will remain bounded for exponentially long times for sufficiently small time steps. While this is easy to achieve for non-critical energy surfaces, in some cases it can also be achieved for critical energy surfaces (those containing critical points of the Hamiltonian). For example, the implicit midpoint rule achieves this for the critical energy surface of the Henon-Heiles system, while the leapfrog method does not. We construct explicit methods which are nonlinearly stable for all simple mechanical systems for exponentially long times. We also address questions of topological stability, finding conditions under which the original and modified energy surfaces are topologically equivalent.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [41] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    Science China(Mathematics), 2018, 61 (09) : 29 - 50
  • [42] Linearization-preserving self-adjoint and symplectic integrators
    R. I. McLachlan
    G. R. W. Quispel
    P. S. P. Tse
    BIT Numerical Mathematics, 2009, 49 : 177 - 197
  • [43] ADAPTIVE HAMILTONIAN VARIATIONAL INTEGRATORS AND APPLICATIONS TO SYMPLECTIC ACCELERATED OPTIMIZATION
    Duruisseaux, Valentin
    Schmitt, Jeremy
    Leok, Melvin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04) : A2949 - A2980
  • [44] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    Science China Mathematics, 2018, 61 : 1567 - 1588
  • [45] Forward symplectic integrators for solving gravitational few-body problems
    Chin, SA
    Chen, CR
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4) : 301 - 322
  • [46] Forward Symplectic Integrators for Solving Gravitational Few-Body Problems
    Siu A. Chin
    C. R. Chen
    Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 301 - 322
  • [47] Geometric integrators for the nonlinear Schrodinger equation
    Islas, AL
    Karpeev, DA
    Schober, CM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (01) : 116 - 148
  • [48] High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrodinger equation
    Skokos, Ch.
    Gerlach, E.
    Bodyfelt, J. D.
    Papamikos, G.
    Eggl, S.
    PHYSICS LETTERS A, 2014, 378 (26-27) : 1809 - 1815
  • [49] Stability and Convergence Analysis of Multi-Symplectic Variational Integrator for Nonlinear Schrodinger Equation
    Lv, Siqi
    Nie, Zhihua
    Liao, Cuicui
    MATHEMATICS, 2023, 11 (17)
  • [50] New open modified Newton Cotes type formulae as multilayer symplectic integrators
    Simos, T. E.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 1983 - 1991