On the nonlinear stability of symplectic integrators

被引:11
|
作者
McLachlan, RI [1 ]
Perlmutter, M
Quispel, GRW
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[2] La Trobe Univ, Dept Math, Melbourne, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
symplectic integrators; stability; backward error analysis;
D O I
10.1023/B:BITN.0000025088.13092.7f
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, especially for nonlinear oscillators. We give conditions under which an initial condition on a compact energy surface will remain bounded for exponentially long times for sufficiently small time steps. While this is easy to achieve for non-critical energy surfaces, in some cases it can also be achieved for critical energy surfaces (those containing critical points of the Hamiltonian). For example, the implicit midpoint rule achieves this for the critical energy surface of the Henon-Heiles system, while the leapfrog method does not. We construct explicit methods which are nonlinearly stable for all simple mechanical systems for exponentially long times. We also address questions of topological stability, finding conditions under which the original and modified energy surfaces are topologically equivalent.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [31] Explicit adaptive symplectic integrators for solving Hamiltonian systems
    Blanes, Sergio
    Iserles, Arieh
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 114 (03) : 297 - 317
  • [32] POISSON BRACKETS, QUASI-STATES AND SYMPLECTIC INTEGRATORS
    Entov, Michael
    Polterovich, Leonid
    Rosen, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1455 - 1468
  • [33] High order symplectic integrators for perturbed Hamiltonian systems
    Laskar, J
    Robutel, P
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 80 (01) : 39 - 62
  • [34] Dealing with Parasitic Behaviour in G-Symplectic Integrators
    Butcher, J. C.
    RECENT DEVELOPMENTS IN THE NUMERICS OF NONLINEAR HYPERBOLIC CONSERVATION LAWS, 2013, 120 : 105 - 123
  • [35] Explicit adaptive symplectic integrators for solving Hamiltonian systems
    Sergio Blanes
    Arieh Iserles
    Celestial Mechanics and Dynamical Astronomy, 2012, 114 : 297 - 317
  • [36] A SYMPLECTIC ALGORITHM FOR THE STABILITY ANALYSIS OF NONLINEAR PARAMETRIC EXCITED SYSTEMS
    Ying, Z. G.
    Ni, Y. Q.
    Chen, Z. H.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2009, 9 (03) : 561 - 584
  • [37] Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations
    Huang, Z. X.
    Wu, X. L.
    Sha, Wei E. I.
    Chen, M. S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (03) : 545 - 547
  • [38] Six-Body Problem Solution Using Symplectic Integrators
    Andreev, V. S.
    Goryainov, S. V.
    Krasilnikov, A. V.
    PROCEEDINGS OF THE 2016 IEEE NORTH WEST RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (ELCONRUSNW), 2016, : 116 - 119
  • [39] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Ding, Zhaodong
    Shang, Zaijiu
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1567 - 1588
  • [40] Linearization-preserving self-adjoint and symplectic integrators
    McLachlan, R. I.
    Quispel, G. R. W.
    Tse, P. S. P.
    BIT NUMERICAL MATHEMATICS, 2009, 49 (01) : 177 - 197