On the nonlinear stability of symplectic integrators

被引:11
|
作者
McLachlan, RI [1 ]
Perlmutter, M
Quispel, GRW
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[2] La Trobe Univ, Dept Math, Melbourne, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
symplectic integrators; stability; backward error analysis;
D O I
10.1023/B:BITN.0000025088.13092.7f
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, especially for nonlinear oscillators. We give conditions under which an initial condition on a compact energy surface will remain bounded for exponentially long times for sufficiently small time steps. While this is easy to achieve for non-critical energy surfaces, in some cases it can also be achieved for critical energy surfaces (those containing critical points of the Hamiltonian). For example, the implicit midpoint rule achieves this for the critical energy surface of the Henon-Heiles system, while the leapfrog method does not. We construct explicit methods which are nonlinearly stable for all simple mechanical systems for exponentially long times. We also address questions of topological stability, finding conditions under which the original and modified energy surfaces are topologically equivalent.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [1] On the Nonlinear Stability of Symplectic Integrators
    Robert I. McLachlan
    Matthew Perlmutter
    G. R. W. Quispel
    BIT Numerical Mathematics, 2004, 44 : 99 - 117
  • [2] Symplectic integrators for discrete nonlinear Schrodinger systems
    Karpeev, DA
    Schober, CM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (02) : 145 - 156
  • [3] Extrapolation of symplectic integrators
    Blanes, S
    Casas, F
    Ros, J
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 75 (02) : 149 - 161
  • [4] Extrapolation of symplectic Integrators
    S. Blanes
    F. Casas
    J. Ros
    Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 149 - 161
  • [5] Collective symplectic integrators
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    NONLINEARITY, 2014, 27 (06) : 1525 - 1542
  • [6] Hamiltonian systems and symplectic integrators
    Gortz, P
    Scherer, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) : 1887 - 1892
  • [7] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04) : 367 - 382
  • [8] SYMPLECTIC INTEGRATORS FOR INDEX 1 CONSTRAINTS
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    Wilkins, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05) : A2150 - A2162
  • [9] Symplectic integrators for the matrix Hill equation
    Bader, Philipp
    Blanes, Sergio
    Ponsoda, Enrique
    Seydaoglu, Muaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 47 - 59
  • [10] SYMPLECTIC INTEGRATORS AND THEIR APPLICATION TO DYNAMICAL ASTRONOMY
    Kinoshita, Hiroshi
    Yoshida, Haruo
    Nakai, Hiroshi
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 50 (01) : 59 - 71