Nonnegative realization of spectra having negative real parts

被引:35
作者
Laffey, Thomas J.
Smigoc, Helena [1 ]
机构
[1] Natl Univ Ireland, Hamilton Inst, Maynooth, Kildare, Ireland
[2] Univ Coll Dublin, Dept Math, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
nonnegative matrices; inverse eigenvalue problem; companion matrix;
D O I
10.1016/j.laa.2005.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and sufficient conditions for a list of complex numbers or to be the spectrum of a nonnegative matrix. In this paper the problem is completely solved in the case when all numbers in the given list a except for one (the Perron eigenvalue) have real parts smaller than or equal to zero. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 17 条
[1]   Negativity compensation in the nonnegative inverse eigenvalue problem [J].
Borobia, A ;
Moro, J ;
Soto, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 (1-3) :73-89
[2]   THE SPECTRA OF NONNEGATIVE MATRICES VIA SYMBOLIC DYNAMICS [J].
BOYLE, M ;
HANDELMAN, D .
ANNALS OF MATHEMATICS, 1991, 133 (02) :249-316
[3]   The nonnegative inverse eigenvalue problem [J].
Egleston, PD ;
Lenker, TD ;
Narayan, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :475-490
[4]   INVERSE PROBLEM FOR NONNEGATIVE AND EVENTUALLY NONNEGATIVE MATRICES [J].
FRIEDLAND, S .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (01) :43-60
[5]  
JOHNSON C. R., 1981, Linear Multilinear Algebra, V10, P113, DOI DOI 10.1080/03081088108817402
[6]   The real and the symmetric nonnegative inverse eigenvalue problems are different [J].
Johnson, CR ;
Laffey, TJ ;
Loewy, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) :3647-3651
[7]  
Laffey TJ, 1998, LINEAR ALGEBRA APPL, V276, P349
[8]  
Laffey TJ, 1999, LINEAR ALGEBRA APPL, V303, P295
[9]  
LAFFEY TJ, 1999, MATRICES GROUP REPRE, V19, P21
[10]  
Loewy R., 1978, Linear Multilinear Algebra, V6, P83, DOI [10.1080/03081087808817226, DOI 10.1080/03081087808817226]