Abelian quotients of extriangulated categories

被引:2
作者
He, Jing [1 ]
Zhou, Panyue [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Hunan, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2019年 / 129卷 / 04期
关键词
Extriangulated categories; abelian categories; cluster-tilting subcategories; TRIANGULATED CATEGORIES;
D O I
10.1007/s12044-019-0492-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that certain subquotient categories of extriangulated categories are abelian. As a particular case, if an extriangulated category C has a cluster-tilting subcategory X, then C/X is abelian. This unifies a result by Koenig and Zhu (Math. Z. 258 (2008) 143-160) for triangulated categories and a result by Demonet and Liu (J. Pure Appl. Algebra 217(12) (2013) 2282-2297) for exact categories.
引用
收藏
页数:11
相关论文
共 13 条
[1]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[2]   LEFT TRIANGULATED CATEGORIES ARISING FROM CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
BELIGIANNIS, A ;
MARMARIDIS, N .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :5021-5036
[3]  
Buan AB, 2007, T AM MATH SOC, V359, P323
[4]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[5]  
Chang W, 2016, ALGEBRAS REPRESENTAT
[6]   Quotients of exact categories by cluster tilting subcategories as module categories [J].
Demonet, Laurent ;
Liu, Yu .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) :2282-2297
[7]  
Geiss C., 2008, Trends in Representation Theory of Algebras and Related Topics, EMS Series of Congress Reports, P253
[8]   Rigid modules over preprojective algebras [J].
Geiss, Christof ;
Leclerc, Bernard ;
Schroeer, Jan .
INVENTIONES MATHEMATICAE, 2006, 165 (03) :589-632
[9]   Mutation in triangulated categories and rigid Cohen-Macaulay modules [J].
Iyama, Osamu ;
Yoshino, Yuji .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :117-168
[10]   Cluster-tilted algebras are Gorenstein and stably Calabi-Yau [J].
Keller, Bernhard ;
Reiten, Idun .
ADVANCES IN MATHEMATICS, 2007, 211 (01) :123-151