Quantitative Nucleocytoplasmic Transport Assays in Cellular Models of Neurodegeneration

被引:3
|
作者
Vanneste, Joni [1 ,2 ,3 ]
Vercruysse, Thomas [4 ]
Van Damme, Philip [1 ,2 ,3 ,5 ]
Van den Bosch, Ludo [1 ,2 ,3 ]
Daelemans, Dirk [4 ]
机构
[1] Univ Leuven, KU Leuven, Dept Neurosci Expt Neurol, Leuven, Belgium
[2] Univ Leuven, KU Leuven, Leuven Brain Inst LBI, Leuven, Belgium
[3] VIB, Lab Neurobiol, Ctr Brain & Dis Res, Leuven, Belgium
[4] Katholieke Univ Leuven, Rega Inst Med Res, Dept Microbiol Immunol & Transplantat, Lab Virol & Chemotherapy, Leuven, Belgium
[5] Univ Hosp Leuven, Dept Neurol, Leuven, Belgium
来源
BIO-PROTOCOL | 2020年 / 10卷 / 12期
关键词
Neurodegenerative disease; Nucleocytoplasmic transport; Amyotrophic lateral sclerosis; C9orf72; Poly-PR; CRISPR-Cas9; FRONTOTEMPORAL LOBAR DEGENERATION; NUCLEAR-PORE COMPLEX; PROTEIN; GENE; TRANSLATION; MUTATIONS; REPEAT; DESIGN; TDP-43;
D O I
10.21769/BioProtoc.3659
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nucleocytoplasmic transport deficits are suggested to play a role in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Given the importance and complexity of this process, understanding when these aberrations occur and which pathways are involved is of great importance. Here, we make use of CRISPR-Cas9 technology to design cell lines stably expressing fluorophore proteins shuttling between the nucleus and cytoplasm by karyopherins of choice. To validate this protocol, we measured an ALS-associated nucleocytoplasmic transport pathway in the presence of the disease-associated peptide poly-PR. This technique allows measuring a particular active nucleocytoplasmic transport pathway in intact cells in a neurodegenerative disease-associated context. Moreover, these experiments can be performed without the need for expensive equipment and have the potential to be upscaled for high-throughput screening purposes.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Cellular Mechanisms of Angiogenesis in Neonatal Rat Models of Retinal Neurodegeneration
    Asano, Daiki
    Hokazono, Masaki
    Hirano, Shogo
    Morita, Akane
    Nakahara, Tsutomu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [42] The Nucleocytoplasmic Transport of Viral Proteins
    Alan C. ZHENG
    Virologica Sinica, 2010, 25 (02) : 79 - 85
  • [43] Nucleocytoplasmic transport: taking an inventory
    Fried, H
    Kutay, U
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (08) : 1659 - 1688
  • [44] Heart failure and nucleocytoplasmic transport
    Cortes, R.
    Rosello-Lleti, E.
    Rivera Otero, M.
    Martinez-Dolz, L.
    Salvador, A.
    Portoles, M.
    EUROPEAN HEART JOURNAL, 2009, 30 : 577 - 577
  • [45] Diversity in nucleocytoplasmic transport pathways
    Imamoto, N
    CELL STRUCTURE AND FUNCTION, 2000, 25 (04) : 207 - 216
  • [46] Nucleocytoplasmic transport and cell proliferation
    Koepp, DM
    Silver, PA
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 1998, 1377 (02): : M39 - M47
  • [47] Single molecule imaging of nucleocytoplasmic transport in cells and quantitative analysis of interaction with nuclear pores
    Tokunaga, M
    Imamoto, N
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 44A - 44A
  • [48] Influence of hydrodynamic conditions on quantitative cellular assays in microfluidic systems
    Yin, Huabing
    Zhang, Xunli
    Pattrick, Nicola
    Klauke, Norbert
    Cordingley, Hayley C.
    Haswell, Stephen J.
    Cooper, Jonathan M.
    ANALYTICAL CHEMISTRY, 2007, 79 (18) : 7139 - 7144
  • [49] Calcium regulation of nucleocytoplasmic transport
    Sarma, Ashapurna
    Yang, Weidong
    PROTEIN & CELL, 2011, 2 (04) : 291 - 302
  • [50] Nucleocytoplasmic transport: a thermodynamic mechanism
    Kopito, Ronen Benjamine
    Elbaum, Michael
    HFSP JOURNAL, 2009, 3 (02): : 130 - 141