The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars

被引:250
作者
Ducomet, Bernard
Feireisl, Eduard
机构
[1] CEA DAM Ile de France, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France
[2] Tech Univ Muenchen, Dept Global Anal, D-85747 Garching, Germany
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
D O I
10.1007/s00220-006-0052-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove existence of global-in-time weak solutions to the equations of magnetohydrodynamics, specifically, the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behaviour of the magnetic field. The result applies to any finite energy data posed on a bounded spatial domain in R-3, supplemented with conservative boundary conditions.
引用
收藏
页码:595 / 629
页数:35
相关论文
共 42 条
[21]   On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :755-767
[22]  
Feireisl E., 2001, COMMENT MATH U CAROL, V42, P83
[23]  
FEIREISL E., 2003, DYNAMICS VISCOUS COM
[24]  
Galdi G.P., 1994, INTRO MATH THEORY NA, VI
[25]  
Gallavotti G., 1999, Statistical Mechanics: A Short Treatise
[26]  
Giovangigli V., 1999, MODEL SIMUL SCI ENG
[27]   Symmetric nonbarotropic flows with large data and forces [J].
Hoff, D ;
Jenssen, HK .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 173 (03) :297-343
[28]  
JEFFRE AN, 1964, NONLINEAR WAVE PROPA
[29]   Bounds on the density for compressible isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Lions, PL .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (08) :659-662
[30]  
Lions PL, 1998, MATH TOPICS FLUID DY, V2