An a-posteriori error estimate for hp-adaptive DG methods for elliptic eigenvalue problems on anisotropically refined meshes

被引:0
作者
Giani, Stefano [1 ]
Hall, Edward [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
Discontinuous Galerkin methods; Elliptic eigenvalue problems; A posteriori error estimation; hp-adaptivity; Anisotropic mesh refinement; FINITE-ELEMENT METHODS; DISCONTINUOUS GALERKIN METHODS; ADVECTION-DIFFUSION EQUATIONS; SPECTRAL APPROXIMATION; CONVERGENCE;
D O I
10.1007/s00607-012-0261-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove an a-posteriori error estimate for an hp-adaptive discontinuous Galerkin method for the numerical solution of elliptic eigenvalue problems with discontinuous coefficients on anisotropically refined rectangular elements. The estimate yields a global upper bound of the errors for both the eigenvalue and the eigenfunction and lower bound of the error for the eigenfunction only. The anisotropy of the underlying meshes is incorporated in the upper bound through an alignment measure. We present a series of numerical experiments to test the flexibility and robustness of this approach within a fully automated hp-adaptive refinement algorithm.
引用
收藏
页码:S319 / S341
页数:23
相关论文
共 40 条
[1]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[2]  
[Anonymous], 1999, P HP FINITE ELEMENT
[3]  
[Anonymous], 1998, Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, DOI DOI 10.1137/1.9780898719628
[4]  
Antonietti P, 2006, THESIS
[5]  
Antonietti P, 2007, J COMPUT APPL MATH, V204, P317
[6]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[7]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[8]  
Babuska I, 1988, SIAM J NUMER ANAL, V25
[9]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[10]   Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations [J].
Burman, Erik ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1119-1140