Sub-supersolution Method for Nonlinear Elliptic Equation with non-coercivity in divergentiel form in Orlicz Spaces

被引:1
作者
Ahmed, Aberqi [1 ]
Jaouad, Bennouna [2 ]
Mhamed, Elmassoudi [2 ]
机构
[1] Univ Fez, Natl Sch Appl Sci Fez, Fes, Morocco
[2] Univ Fez, Fac Sci Dhar El Mahraz, Dept Math, BP 1796, Atlas Fez, Morocco
来源
2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018 | 2019年 / 2074卷
关键词
INEQUALITIES;
D O I
10.1063/1.5090621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we shall be concerned with the existence result to the nonlinear elliptic equations -div(a(x,u,del u))+Phi(x, u))+g(x,u,del u) = 0, in the setting of Orlicz spaces. The results obtained are proved using the sub- and supersolution method.
引用
收藏
页数:18
相关论文
共 16 条
[1]   Nonlinear parabolic inequalities with lower order terms [J].
Aberqi, A. ;
Bennouna, J. ;
Mekkour, M. ;
Redwane, H. .
APPLICABLE ANALYSIS, 2017, 96 (12) :2102-2117
[2]  
Adams R. A., 1975, SOBOLEV SPACES
[3]  
[Anonymous], 1963, MATH Z, DOI DOI 10.1007/BF01111422
[4]   Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (11) :1769-1784
[5]  
Carl S., 2006, NONSMOOTH VARIATIONA
[6]  
DEUEL J, 1974, CR ACAD SCI A MATH, V279, P719
[7]   EXISTENCE RESULT FOR NONLINEAR PARABOLIC EQUATIONS WITH LOWER ORDER TERMS [J].
Di Nardo, Rosaria ;
Feo, Filomena ;
Guibe, Olivier .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :161-186
[8]  
Dong G., 2015, BOUND VALUE PROBL, V18, P22
[9]   Differential equations of divergence form in separable Musielak-Orlicz-Sobolev spaces [J].
Dong, Ge ;
Fang, Xiaochun .
BOUNDARY VALUE PROBLEMS, 2016,
[10]   Variational Inequalities with Multivalued Lower Order Terms and Convex Functionals in Orlicz-Sobolev Spaces [J].
Dong, Ge ;
Fang, Xiaochun .
JOURNAL OF FUNCTION SPACES, 2015, 2015