Damage evolution in high density polyethylene under tensile, compressive, creep and fatigue loading conditions

被引:8
|
作者
Zhang, Yi [1 ,2 ]
Ben Jar, P-y [2 ]
Xue, Shifeng [1 ]
Li, Lin [3 ]
Han, Limei [1 ]
机构
[1] China Univ Petr East China, Dept Engn Mech, Coll Pipeline & Civil Engn, Qingdao, Shandong, Peoples R China
[2] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada
[3] China Univ Petr East China, Sch Petr Engn, Shandong Prov Key Lab Oilfield Chem, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Damage evolution; HDPE; Creep; Fatigue; STRESS-STATE-DEPENDENCE; DUCTILE DAMAGE; PLASTICITY MODEL; FRACTURE; MECHANICS; DEFORMATION; FRAMEWORK; ACCUMULATION; BEHAVIOR; FAILURE;
D O I
10.1016/j.engfracmech.2019.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Influence of various loading histories on mechanical properties and damage evolution of polyethylene (PE) is quantified through a two-stage test method. The first-stage tests are to introduce damage by subjecting the specimens to different prestrain levels under tensile, compressive, creep and fatigue loading condition. Two months later, the second-stage tests apply monotonic tensile loading at a crosshead speed of 0.01 mm/min to characterize the mechanical properties for specimens that have had damage generated in the first-stage tests. Experimental results suggest that yield stress and loading stiffness decrease and residual plastic strain increases with the increase of prestrain introduced in the first-stage tests. Damage evolution law, based on the degradation of loading stiffness has been established as a function of prestrain and residual plastic strain. Results show that damage variable expressed as a function of prestrain strongly depends on loading conditions applied in the first-stage tests. However, damage evolution described by the relationship between damage variable and plastic strain is found to be independent on the loading condition, suggesting that a unified, plastic strain controlled damage evolution law can be established for PE materials.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [21] Fatigue life prediction and damage modelling of High-density polyethylene under constant and two-block loading
    Abdelkader, Djebli
    Mostefa, Bendouba
    Abdelkrim, Aid
    Abderrahim, Talha
    Noureddine, Benseddiq
    Mohamed, Benguediab
    3RD INTERNATIONAL CONFERENCE ON MATERIAL AND COMPONENT PERFORMANCE UNDER VARIABLE AMPLITUDE LOADING, VAL 2015, 2015, 101 : 2 - 9
  • [22] Mechanical properties and fatigue damage evolution of granite under cyclic loading and unloading conditions
    Yang, Jixian
    Luo, Mingkun
    Zhang, Xiaowu
    Huang, Ning
    Hou, Shengjun
    Journal of Mining and Strata Control Engineering, 2021, 3 (03)
  • [23] Brittle fracture of rock under combined tensile and compressive loading conditions
    Tang, S. B.
    Bao, C. Y.
    Liu, H. Y.
    CANADIAN GEOTECHNICAL JOURNAL, 2017, 54 (01) : 88 - 101
  • [24] Fatigue damage evolution of coal under cyclic loading
    Yong-Jie Yang
    Lu-Yi Xing
    Hui-Qiang Duan
    Lei Deng
    Yan-Chao Xue
    Arabian Journal of Geosciences, 2018, 11
  • [25] Fatigue damage evolution of coal under cyclic loading
    Yang, Yong-Jie
    Xing, Lu-Yi
    Duan, Hui-Qiang
    Deng, Lei
    Xue, Yan-Chao
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (18)
  • [26] Damage evaluation under complex fatigue loading conditions
    Reis, L.
    Caxias, J.
    Soares, H.
    Costa, P. R.
    Anes, V
    Freitas, M.
    FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (48): : 318 - 331
  • [27] Damage development of Al/SiC metal matrix composite under fatigue, creep and monotonic loading conditions
    Rutecka, A.
    Kowalewski, Z. L.
    Pietrzak, K.
    Dietrich, L.
    Makowska, K.
    Wozniak, J.
    Kostecki, M.
    Bochniak, W.
    Olszyna, A.
    11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 : 1420 - 1425
  • [28] Modeling basic creep in concrete at early-age under compressive and tensile loading
    Hilairea, Adrien
    Benboudjema, Farid
    Darquennes, Aveline
    Berthaud, Yves
    Nahas, Georges
    NUCLEAR ENGINEERING AND DESIGN, 2014, 269 : 222 - 230
  • [29] A COMPARISON OF TENSILE, COMPRESSIVE AND TORSIONAL CREEP IN ISOTROPIC AND ORIENTED POLYETHYLENE
    PHILIP, M
    WARD, IM
    PARSONS, B
    JOURNAL OF MATERIALS SCIENCE, 1986, 21 (03) : 879 - 886
  • [30] Fatigue behaviour of alumina-fibre-reinforced epoxy resin composite pipes under tensile and compressive loading conditions
    Srivastava, VK
    Kawada, H
    COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (16) : 2393 - 2403