Hartwig's triple reverse order law revisited

被引:9
作者
Dincic, Nebojsa C. [1 ]
Djordjevic, Dragan S. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Nish, Serbia
关键词
Moore-Penrose inverse; reverse order law; triple reverse order law; 47A05; 15A09; GENERALIZED INVERSE; PRODUCT;
D O I
10.1080/03081087.2013.794945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical Hartwig's triple reverse-order law for the Moore-Penrose inverse to closed range bounded linear operators on infinite dimensional Hilbert spaces.
引用
收藏
页码:918 / 924
页数:7
相关论文
共 13 条
[1]  
Ben-Israel A., 2003, Generalized inverses: theory and applications
[2]  
Bouldin R.H., 1982, Recent Applications of Generalized Inverses., V66, P233
[3]  
Bouldin RH, 1973, SIAM J APPL MATH, V25, P489
[4]  
Caradus S.R., 1978, Generalized inverses and operator theory
[5]   Further results on the reverse order law for generalized inverses [J].
Djordjevic, Dragan S. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) :1242-1246
[6]   Reverse order law for the Moore-Penrose inverse [J].
Djordjevic, Dragan S. ;
Dincic, Nebojsa C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) :252-261
[7]   NOTE ON GENERALIZED INVERSE OF A MATRIX PRODUCT [J].
GREVILLE, TN .
SIAM REVIEW, 1966, 8 (04) :518-&
[8]   THE REVERSE ORDER LAW REVISITED [J].
HARTWIG, RE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 :241-246
[9]   THE PRODUCT OF OPERATORS WITH CLOSED RANGE AND AN EXTENSION OF THE REVERSE ORDER LAW [J].
IZUMINO, S .
TOHOKU MATHEMATICAL JOURNAL, 1982, 34 (01) :43-52
[10]   Moore-Penrose inverse in rings with involution [J].
Koliha, J. J. ;
Djordjevic, Dragan ;
Cvetkovic, Dragana .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :371-381