Dismantlings and iterated clique graphs

被引:17
作者
Frías-Armenta, ME
Neumann-Lara, V
Pizaña, MA
机构
[1] Univ Sonora, Dept Matemat, Div Ciencias Exactas & Nat, Hermosillo, Sonora, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Elect, Mexico City 09340, DF, Mexico
关键词
clique graphs; iterated clique graphs; dismantlings; clique behaviour;
D O I
10.1016/j.disc.2003.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G and two vertices x, y is an element of V(G), we say that x is dominated by y if the closed neighbourhood of x is contained in that of y. Here we prove that if x is a dominated vertex, then G and G - {x} have the same dynamical behaviour under the iteration of the clique operator. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 265
页数:3
相关论文
共 50 条
  • [31] Cliques and extended triangles.: A necessary condition for planar clique graphs
    Alcón, L
    Gutierrez, M
    DISCRETE APPLIED MATHEMATICS, 2004, 141 (1-3) : 3 - 17
  • [32] Characterising clique convergence for locally cyclic graphs of minimum degree δ ≥ 6
    Limbach, Anna M.
    Winter, Martin
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [33] Termination of the iterated strong-factor operator on multipartite graphs
    Crespelle, Christophe
    Phan, Thi Ha Duong
    Thi Hung Tran
    THEORETICAL COMPUTER SCIENCE, 2015, 571 : 67 - 77
  • [34] CLIQUE-DIVERGENCE IS NOT FIRST-ORDER EXPRESSIBLE FOR THE CLASS OF FINITE GRAPHS
    Cedillo, C.
    Pizana, M. A.
    ARS COMBINATORIA, 2020, 152 : 3 - 11
  • [35] On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
    Alcon, L.
    Faria, L.
    de Figueiredo, C. M. H.
    Gutierrez, M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) : 1279 - 1285
  • [36] The icosahedron is clique divergent
    Pizaña, MA
    DISCRETE MATHEMATICS, 2003, 262 (1-3) : 229 - 239
  • [37] The complexity of clique graph recognition
    Alcon, Liliana
    Faria, Luerbio
    de Figueiredo, Celina M. H.
    Gutierrez, Marisa
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2072 - 2083
  • [38] Split clique graph complexity
    Alcon, Liliana
    Faria, Luerbio
    de Figueiredo, Celina M. H.
    Gutierrez, Marisa
    THEORETICAL COMPUTER SCIENCE, 2013, 506 : 29 - 42
  • [39] Contractibility and the clique graph operator
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3461 - 3469
  • [40] On the Iterated Biclique Operator
    Groshaus, Marina
    Montero, Leandro P.
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 181 - 190