Primitive values of rational functions at primitive elements of a finite field

被引:12
|
作者
Cohen, Stephen D. [1 ]
Sharma, Hariom [2 ]
Sharma, Rajendra [2 ]
机构
[1] 6 Bracken Rd, Aberdeen AB12 4TA, Scotland
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Finite fields; Characters; Primitive element; SUMS; PAIR;
D O I
10.1016/j.jnt.2020.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime power q and an integer n >= 2, we establish a sufficient condition for the existence of a primitive pair (alpha, f(alpha)) where alpha is an element of F-q and f (x) is an element of F-q(x) is a rational function of degree sum n. (Here f = f(1)/f(2), where f(1), f(2) are coprime polynomials of degree n(1), n(2), respectively, and the sum of their degrees n(1) + n(2) = n.) For any n, such a pair is guaranteed to exist for sufficiently large q. Indeed, when n = 2, such a pair definitely does not exist only for 28 values of q and possibly (but unlikely) only for at most 3911 other values of q. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [31] About r-primitive and k-normal elements in finite fields
    Josimar J. R. Aguirre
    Cícero Carvalho
    Victor G. L. Neumann
    Designs, Codes and Cryptography, 2023, 91 : 115 - 126
  • [32] Observations on primitive, normal, and subnormal elements of field extensions
    Steven H. Weintraub
    Monatshefte für Mathematik, 2011, 162 : 239 - 244
  • [33] Arithmetic Progressions of r-Primitive Elements in a Field
    Sharma, Jyotsna
    Sarma, Ritumoni
    Laishram, Shanta
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [34] Pairs of r-Primitive and k-Normal Elements in Finite Fields
    Josimar J. R. Aguirre
    Victor G. L. Neumann
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [35] On r-primitive k-normal elements over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 82
  • [36] Strongly primitive elements
    Goldstein, Daniel
    Hales, Alfred W.
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 24 - 36
  • [37] Existence of primitive 1-normal elements in finite fields
    Reis, Lucas
    Thomson, David
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 238 - 269
  • [38] On the existence of pairs of primitive normal elements over finite fields
    Mamta Rani
    Avnish K. Sharma
    Sharwan K. Tiwari
    Indivar Gupta
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 1032 - 1049
  • [39] Some primitive elements for the Artin–Schreier extensions of finite fields
    Popovych R.B.
    Journal of Mathematical Sciences, 2015, 210 (1) : 67 - 75
  • [40] On the existence of pairs of primitive normal elements over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    Gupta, Indivar
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1032 - 1049