Dual- tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments

被引:11
作者
Villegas, Christine [1 ]
Muresan, Virgil [1 ]
Ladescu Muresan, Zoia [1 ]
机构
[1] Rutgers State Univ, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07101 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ALZHEIMERS-DISEASE; SECRETASE CLEAVAGE; AXONAL-TRANSPORT; GOLGI NETWORK; CELL-SURFACE; APP; COMPARTMENT; KINESIN; TRAFFICKING; VESICLES;
D O I
10.1093/hmg/ddt555
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amyloid-beta precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, N- and C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous N- and C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributed vesicle-like structures. The experimental treatments that selectively destabilize the acetylated microtubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. They also point to a compartment associated with acetylated microtubules in the neuronal soma-not the neurite terminals-as a major site of APP cleavage, and segregation of NTFs from CTFs.
引用
收藏
页码:1631 / 1643
页数:13
相关论文
共 54 条
[1]  
Adams S, 2002, FORBES, V169, P124
[2]  
AMARATUNGA A, 1995, J NEUROCHEM, V64, P2374
[3]  
[Anonymous], 1999, Biostatistical Analysis
[4]   THE ALZHEIMERS AMYLOID PRECURSOR PROTEIN IS PRODUCED BY TYPE-I ASTROCYTES IN PRIMARY CULTURES OF RAT NEUROGLIA [J].
BERKENBOSCH, F ;
REFOLO, LM ;
FRIEDRICH, VL ;
CASPER, D ;
BLUM, M ;
ROBAKIS, NK .
JOURNAL OF NEUROSCIENCE RESEARCH, 1990, 25 (03) :431-440
[5]   Genetic insights in Alzheimer's disease [J].
Bettens, Karolien ;
Sleegers, Kristel ;
Van Broeckhoven, Christine .
LANCET NEUROLOGY, 2013, 12 (01) :92-104
[6]  
Borg JP, 1996, MOL CELL BIOL, V16, P6229
[7]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[8]   Where, when, and in what form does sporadic Alzheimer's disease begin? [J].
Braak, Heiko ;
Del Tredici, Kelly .
CURRENT OPINION IN NEUROLOGY, 2012, 25 (06) :708-714
[9]   Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years [J].
Braak, Heiko ;
Thal, Dietmar R. ;
Ghebremedhin, Estifanos ;
Del Tredici, Kelly .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2011, 70 (11) :960-969
[10]   Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network [J].
Choy, Regina Wai-Yan ;
Cheng, Zhiliang ;
Schekman, Randy .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (30) :E2077-E2082