On Entropy of Non-autonomous Discrete Systems

被引:17
作者
Canovas, Jose S. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30202, Spain
来源
PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS | 2013年 / 54卷
关键词
ERGODIC THEOREM;
D O I
10.1007/978-3-642-38830-9_9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we explore the notion of entropy for non-autonomous discrete systems and solve an open question stated in Zhu et al. (J Korean Math Soc 49:165-185, 2012). Some other open questions are also proposed.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 20 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
BELLOW A., 1984, Contemp. Math., V26, P49
[3]  
Blum J., 1960, B AM MATH SOC, V66, P308, DOI 10.1090/S0002-9904-1960-10481-8
[4]   ALMOST SURE CONVERGENCE AND BOUNDED ENTROPY [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 63 (01) :79-97
[5]   ON THE MAXIMAL ERGODIC THEOREM FOR CERTAIN SUBSETS OF THE INTEGERS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :39-72
[6]   ON THE POINTWISE ERGODIC THEOREM ON LP FOR ARITHMETIC SETS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :73-84
[8]  
Canovas J.S., 2001, APPL GEN TOPOL, V2, P1
[9]   Topological sequence entropy of interval maps [J].
Cánovas, JS .
NONLINEARITY, 2004, 17 (01) :49-56
[10]  
Denker M., 1976, Ergodic Theory on Compact Spaces