The J-equation and the supercritical deformed Hermitian-Yang-Mills equation

被引:31
作者
Chen, Gao [1 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-021-01035-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that for any Kahler metrics omega(0) and chi on M, there exists a Kahler metric omega(phi) = omega(0) + root-1 partial derivative(partial derivative) over bar phi > 0 satisfying the J-equation tr omega(phi)chi = c if and only if (M, [omega(0)], [chi]) is uniformly J-stable. As a corollary, we find a sufficient condition for the existence of constant scalar curvature Kahler metrics with c(1) < 0. Using the same method, we also prove a similar result for the supercritical deformed Hermitian-Yang-Mills equation.
引用
收藏
页码:529 / 602
页数:74
相关论文
共 41 条
[1]  
Apostolov V., Calderbank D.M.J., Gauduchon P., Tonnesen-Friedman C.W., Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability, Invent. Math., 173, 3, pp. 547-601, (2008)
[2]  
Aubin T., Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57, 2, pp. 143-153, (1984)
[3]  
Blocki Z., Kolodziej S., On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., 135, 7, pp. 2089-2093, (2007)
[4]  
Bedford E., Taylor B.A., The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., 37, 1, pp. 1-44, (1976)
[5]  
Cheng, J.: On the Constant Scalar Curvature Kähler Metrics, Apriori Estimates, Arxiv E-Prints (2017). Arxiv, (1712)
[6]  
Chen X., Donaldson S., Sun S., Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., 28, 1, pp. 183-197, (2015)
[7]  
Chen X., Donaldson S., Sun S., Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 π, J. Am. Math. Soc., 28, 1, pp. 199-234, (2015)
[8]  
Chen X., Donaldson S., Sun S., Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2 π and completion of the main proof, J. Am. Math. Soc., 28, 1, pp. 235-278, (2015)
[9]  
Chen X., On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 12, pp. 607-623, (2000)
[10]  
Collins T.C., Jacob A., Yau S.-T., (1, 1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions, Camb. J. Math., 8, 2, pp. 407-452, (2020)