Hypocoercivity

被引:396
作者
Villani, Cedric
机构
关键词
NAVIER-STOKES EQUATIONS; FOKKER-PLANCK EQUATION; BOLTZMANN-EQUATION; GLOBAL EQUILIBRIUM; EXPONENTIAL CONVERGENCE; BRUNN-MINKOWSKI; LANDAU EQUATION; KINETIC-MODELS; TIME BEHAVIOR; PART I;
D O I
10.1090/S0065-9266-09-00567-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / +
页数:137
相关论文
共 58 条
[1]  
[Anonymous], 1989, FOKKER PLANCK EQUATI
[2]   A large data existence result for the stationary Boltzmann equation in a cylindrical geometry [J].
Arkeryd, L ;
Nouri, A .
ARKIV FOR MATEMATIK, 2005, 43 (01) :29-50
[3]  
ARKERYD L, 1994, ISTANBUL TU B, V479, P209
[4]  
Arkeryd L, 2002, ANN SCUOLA NORM-SCI, V1, P359
[5]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[6]  
Arnold V., 1988, Equations differentielles ordinaires, V4e
[7]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[8]   Hypoelliptic regularity in kinetic equations [J].
Bouchut, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (11) :1135-1159
[9]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[10]   Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles [J].
Cáceres, MJ ;
Carrillo, JA ;
Goudon, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :969-989