Effective equations of motion for quantum systems

被引:163
作者
Bojowald, Martin [1 ]
Skirzewski, Aureliano
机构
[1] Penn State Univ, Inst Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
关键词
effective theory; low energy effective action; dynamical coherent states;
D O I
10.1142/S0129055X06002772
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture are developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.
引用
收藏
页码:713 / 745
页数:33
相关论文
共 25 条
  • [1] NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY
    ASHTEKAR, A
    [J]. PHYSICAL REVIEW D, 1987, 36 (06): : 1587 - 1602
  • [2] Ashtekar A., UNPUB
  • [3] Ashtekar A., 1999, Geometrical Formulation of Quantum Mechanics, P23, DOI [10.1007/978-1-4612-1422-9_3, DOI 10.1007/978-1-4612-1422-9_3]
  • [4] Ashtekar A, 2003, ADV THEOR MATH PHYS, V7, P233
  • [5] REAL ASHTEKAR VARIABLES FOR LORENTZIAN SIGNATURE SPACE-TIMES
    BARBERO, JF
    [J]. PHYSICAL REVIEW D, 1995, 51 (10): : 5507 - 5510
  • [6] Inflation from quantum geometry
    Bojowald, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (26)
  • [7] Isotropic loop quantum cosmology
    Bojowald, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (10) : 2717 - 2741
  • [8] CARNETTI F, 2000, P INT SCH PHYS ENR F, P431
  • [9] EFFECTIVE ACTION FOR COMPOSITE OPERATORS
    CORNWALL, JM
    JACKIW, R
    TOMBOULIS, E
    [J]. PHYSICAL REVIEW D, 1974, 10 (08) : 2428 - 2445
  • [10] GAUGE-INVARIANT SIGNAL FOR GAUGE-SYMMETRY BREAKING
    DOLAN, L
    JACKIW, R
    [J]. PHYSICAL REVIEW D, 1974, 9 (10): : 2904 - 2912