Space dependent, full orbit effects on runaway electron dynamics in tokamak plasmas

被引:34
作者
Carbajal, L. [1 ]
del-Castillo-Negrete, D. [1 ]
Spong, D. [1 ]
Seal, S. [1 ]
Baylor, L. [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
SIMULATION; MOTION;
D O I
10.1063/1.4981209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of RE (runaway electrons) in fusion plasmas span a wide range of temporal scales, from the fast gyro-motion, similar to 10(-11) s, to the observational time scales, similar to 10(-2) -> 1 s. To cope with this scale separation, RE are usually studied within the bounce-average or the guiding center approximations. Although these approximations have yielded valuable insights, a study with predictive capabilities of RE in fusion plasmas calls for the incorporation of full orbit effects in configuration space in the presence of three-dimensional magnetic fields. We present numerical results on this problem using the Kinetic Orbit Runaway electrons Code that follows relativistic electrons in general electric and magnetic fields under the full Lorentz force, collisions, and radiation losses. At relativistic energies, the main energy loss is due to radiation damping, which we incorporate using the Landau-Lifshitz formulation of the Abraham-Lorentz-Dirac force. The main focus is on full orbit effects on synchrotron radiation. It is shown that even in the absence of magnetic field stochasticty, neglecting orbit dynamics can introduce significant errors in the computation of the total radiated power and the synchrotron spectra. The statistics of collisionless (i.e., full orbit induced) pitch angle dispersion, and its key role played on synchrotron radiation, are studied in detail. Numerical results are also presented on the pitch angle dependence of the spatial confinement of RE and on full orbit effects on the competition of electric field acceleration and radiation damping. Finally, full orbit calculations are used to explore the limitations of gyro-averaging in the relativistic regime. To explore the practical impact of the results, DIII-D and ITER-like parameters are used in the simulations. Published by AIP Publishing.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Theory of Two Threshold Fields for Relativistic Runaway Electrons
    Aleynikov, Pavel
    Breizman, Boris N.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (15)
  • [2] Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation
    Boozer, Allen H.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (03)
  • [3] Simulation of runaway electrons during tokamak disruptions
    Eriksson, LG
    Helander, P
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2003, 154 (03) : 175 - 196
  • [4] MOTION OF RUNAWAY ELECTRONS IN MOMENTUM SPACE
    FUSSMANN, G
    [J]. NUCLEAR FUSION, 1979, 19 (03) : 327 - 334
  • [5] Phase-space dynamics of runaway electrons in tokamaks
    Guan, Xiaoyin
    Qin, Hong
    Fisch, Nathaniel J.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (09)
  • [6] MONTE-CARLO SIMULATION OF RUNAWAY ELECTRONS IN A TOROIDAL GEOMETRY
    HEIKKINEN, JA
    SIPILA, SK
    PATTIKANGAS, TJH
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1993, 76 (02) : 215 - 230
  • [7] Chapter 3:: MHD stability, operational limits and disruptions
    Hender, T. C.
    Wesley, J. C.
    Bialek, J.
    Bondeson, A.
    Boozer, A. H.
    Buttery, R. J.
    Garofalo, A.
    Goodman, T. P.
    Granetz, R. S.
    Gribov, Y.
    Gruber, O.
    Gryaznevich, M.
    Giruzzi, G.
    Guenter, S.
    Hayashi, N.
    Helander, P.
    Hegna, C. C.
    Howell, D. F.
    Humphreys, D. A.
    Huysmans, G. T. A.
    Hyatt, A. W.
    Isayama, A.
    Jardin, S. C.
    Kawano, Y.
    Kellman, A.
    Kessel, C.
    Koslowski, H. R.
    La Haye, R. J.
    Lazzaro, E.
    Liu, Y. Q.
    Lukash, V.
    Manickam, J.
    Medvedev, S.
    Mertens, V.
    Mirnov, S. V.
    Nakamura, Y.
    Navratil, G.
    Okabayashi, M.
    Ozeki, T.
    Paccagnella, R.
    Pautasso, G.
    Porcelli, F.
    Pustovitov, V. D.
    Riccardo, V.
    Sato, M.
    Sauter, O.
    Schaffer, M. J.
    Shimada, M.
    Sonato, P.
    Strait, E. J.
    [J]. NUCLEAR FUSION, 2007, 47 (06) : S128 - S202
  • [8] Status of research toward the ITER disruption mitigation system
    Hollmann, E. M.
    Aleynikov, P. B.
    Fulop, T.
    Humphreys, D. A.
    Izzo, V. A.
    Lehnen, M.
    Lukash, V. E.
    Papp, G.
    Pautasso, G.
    Saint-Laurent, F.
    Snipes, J. A.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (02)
  • [9] Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
    Hollmann, E. M.
    Austin, M. E.
    Boedo, J. A.
    Brooks, N. H.
    Commaux, N.
    Eidietis, N. W.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Loarte, A.
    Martin-Solis, J.
    Moyer, R. A.
    Munoz-Burgos, J. M.
    Parks, P. B.
    Rudakov, D. L.
    Strait, E. J.
    Tsui, C.
    Van Zeeland, M. A.
    Wesley, J. C.
    Yu, J. H.
    [J]. NUCLEAR FUSION, 2013, 53 (08)
  • [10] Jian L., 2016, Nucl. Fusion, V56, DOI [10.1088/0029-5515/56/6/064002, DOI 10.1088/0029-5515/56/6/064002]