Eco-efficiency considerations on the end-of-life of consumer electronic products

被引:26
作者
Huisman, J [1 ]
Stevels, ALN
Stobbe, I
机构
[1] Delft Univ Technol, NL-2628 CE Delft, Netherlands
[2] Philips Consumer Elect, Environm Competence Ctr, Eindhoven, Netherlands
[3] Fraunhofer Inst Reliabil & Microintegrat, Berlin, Germany
来源
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING | 2004年 / 27卷 / 01期
关键词
eco-efficiency; end-of-life; recyclability;
D O I
10.1109/TEPM.2004.832214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to improve the eco-efficiency at the end-of-life phase of consumer electronic products, comprehensive assessments should be made. The Quotes for environmentally WEighted RecyclabiliTY and Eco-Efficiency method (QWERTY/EE) developed at the Delft University of Technology is applied to aim at minimal end-of-life treatment costs against maximal environmental recovery. In this paper, the outcomes of this eco-efficiency concept are presented based on a range of improvement options like changing shredding and separation settings, plastic recycling, glass recycling, or separate sorting of certain products. The analysis of more than 75 different consumer electronic products clearly shows groups in state-of-the-art recycling performance in both environmental and economic terms and a substantial distinction between the various product categories. From there, the evaluation takes place of technical improvements in relation to current best-practice recycling. Even more, with the QWERTY/EE concept it is made possible to select and rank improvement options of current and future end-of-life processing and to determine which options bring substantial environmental gain in relation to financial investments made. For glass dominated products, an increase in glass recycling results in significant environmental improvements. The same counts for separate sorting and treatment of precious metal dominated products with a relatively high precious metal content like cellular phones. However, economies of scale are a major assumption that has to be fulfilled in this case. Other conclusions and outcomes are that plastic recycling seems only eco-efficient for large housings of appliances already undergoing disassembly due to the presence of a cathode ray tube (CRT) or liquid crystal display (LCD). For small and medium-sized housings, the extra costs of plastic recycling are high in relation to the environmental improvement realized. In most cases, dedicated shredding and separation of metal dominated products does not lead to substantial environmental or economic improvements. In general, it is shown that the various options to increase the eco-efficiency of end-of-life systems lead to very mixed environmental and economic results. As a consequence, end-of-life policy strategies should be evaluated, and in some cases revised, to support and enhance the most eco-efficient improvement options. Regarding the sensitivity of the results, it is shown that although the different environmental assessment models prioritize individual materials in a different order, the results for the improvement options on a system level are pointing in the same direction, except for plastic recycling scenarios.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
[41]   CONTRIBUTIONS TO INCREASING THE ECO-EFFICIENCY OF LEATHER INDUSTRY BY WASTE RECOVERY AND USE IN THE DEVELOPMENT OF NEW ECO-FRIENDLY PRODUCTS AND TECHNOLOGIES [J].
Crudu, Marian ;
Zainescu, Gabriel A. ;
Crudu, Andra M. ;
Maier, Stelian ;
Rosu, Daniel .
ENERGY AND CLEAN TECHNOLOGIES, 2015, :641-648
[42]   Methodological considerations for end-of-life research in patients with chronic kidney disease [J].
Davison, Sara N. ;
Murtagh, Fliss E. M. ;
Higginson, Irene J. .
JOURNAL OF NEPHROLOGY, 2008, 21 (03) :268-282
[43]   Islamic Considerations on the Application of Patient’s Autonomy in End-of-Life Decision [J].
Mohammad Mustaqim Malek ;
Noor Naemah Abdul Rahman ;
Mohd Shahnaz Hasan ;
Luqman Haji Abdullah .
Journal of Religion and Health, 2018, 57 :1524-1537
[44]   Sustainability considerations for end-of-life fibre-reinforced plastic boats [J].
Geraghty, Ruadan ;
Graham-Jones, Jasper ;
Pemberton, Richard ;
Summerscales, John ;
Bray, Simon .
REGIONAL STUDIES IN MARINE SCIENCE, 2025, 83
[45]   Islamic Considerations on the Application of Patient's Autonomy in End-of-Life Decision [J].
Malek, Mohammad Mustaqim ;
Rahman, Noor Naemah Abdul ;
Hasan, Mohd Shahnaz ;
Abdullah, Luqman Haji .
JOURNAL OF RELIGION & HEALTH, 2018, 57 (04) :1524-1537
[46]   Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution [J].
Sun, Z. H. I. ;
Xiao, Y. ;
Sietsma, J. ;
Agterhuis, H. ;
Visser, G. ;
Yang, Y. .
HYDROMETALLURGY, 2015, 152 :91-99
[47]   Carbon footprint and eco-efficiency of China's regional construction industry: A life cycle perspective [J].
Zhou, Zhongbao ;
Li, Kai ;
Liu, Qing ;
Tao, Zui ;
Lin, Ling .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2021, 72 (12) :2704-2719
[48]   Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis [J].
Beltran-Esteve, Mercedes ;
Reig-Martinez, Ernest ;
Estruch-Guitart, Vicent .
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2017, 63 :116-127
[49]   The influence of information about nutritional quality, environmental impact and eco-efficiency of menu items on consumer perceptions and behaviors [J].
Plamondon, Gabrielle ;
Labonte, Marie-Eve ;
Pomerleau, Sonia ;
Vezina, Stephanie ;
Mikhaylin, Sergey ;
Laberee, Laurence ;
Provencher, Veronique .
FOOD QUALITY AND PREFERENCE, 2022, 102
[50]   Eco-efficiency to support selection of energy conservation measures for buildings: A life-cycle approach [J].
Tadeu, Sergio ;
Rodrigues, Carla ;
Marques, Pedro ;
Freire, Fausto .
JOURNAL OF BUILDING ENGINEERING, 2022, 61