Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study

被引:26
|
作者
Jiang, Su [1 ,2 ]
Wang, Dan [1 ]
Yan, Shuangyong [3 ]
Liu, Shiming [2 ]
Liu, Bin [4 ]
Kang, Houxiang [2 ]
Wang, Guo-Liang [2 ,5 ]
机构
[1] Hunan Agr Univ, Coll Agron, Changsha 410128, Hunan, Peoples R China
[2] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pest, Beijing 100193, Peoples R China
[3] Tianjin Acad Agr Sci, Tianjin Crop Res Inst, Tian Jin Key Lab Crop Genet Breeding, Tianjin 300112, Peoples R China
[4] Guangdong Acad Agr Sci, Rice Res Inst, Guangdong Key Lab New Technol Rice Breeding, Guangzhou 510640, Guangdong, Peoples R China
[5] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
Rice; Tiller number; Genome wide association study; Genetic architecture; Single nucleotide polymorphism; Linkage disequilibrium; Gene expression; PLANT ARCHITECTURE; AGRONOMIC TRAITS; RESISTANCE; PROTEIN; BIOSYNTHESIS; MUTATIONS; NUMBER; GROWTH; YIELD;
D O I
10.1186/s12284-019-0302-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
BackgroundRice tiller number (TN) is one of the most important components associated with rice grain yield. Around one hundred rice TN genes have been identified, but dissecting the genetic architecture of rice TN variations remains difficult because of its complex trait and control by both major genes and quantitative trait loci (QTLs).ResultsIn this study, we used a subset of the rice diversity population II (S-RDP-II), genotyped with 700,000 single nucleotide polymorphisms (SNPs), to identify the loci associated with tiller number variations (LATNs) through a genome-wide association study (GWAS). The analysis revealed that 23 LATNs are significantly associated with TN variations. Among the 23 LATNs, eight are co-localized with previously cloned TN genes, and the remaining 15 LATNs are novel. DNA sequence analysis of the 15 novel LATNs led to the identification of five candidate genes using the accessions with extreme TN phenotypes. Genetic variations in two of the genes are mainly located in the promoter regions. qRT-PCR analysis showed that the expression levels of these two genes are also closely associated with TN variations.ConclusionsWe identified 15 novel LATNs that contribute significantly to the genetic variation of rice TN. Of these 15, the five identified TN-associated candidate genes will enhance our understanding of rice tillering and can be used as molecular markers for improving rice yield.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Genome-wide association study reveals the genetic architecture of root hair length in maize
    Liu, Lin
    Jiang, Lu-Guang
    Luo, Jin-Hong
    Xia, Ai-Ai
    Chen, Li-Qun
    He, Yan
    BMC GENOMICS, 2021, 22 (01)
  • [22] Genetic Dissection of Grain Size Traits Through Genome-Wide Association Study Based on Genic Markers in Rice
    Nayak, Amrit Kumar
    Anilkumar, C.
    Behera, Sasmita
    Sah, Rameswar Prasad
    Lavanya, Gera Roopa
    Kumar, Awadhesh
    Behera, Lambodar
    Tp, Muhammed Azharudheen
    RICE SCIENCE, 2022, 29 (05) : 462 - 472
  • [23] Dissection of the genetic architecture of peduncle vascular bundle-related traits in maize by a genome-wide association study
    Sun, Gaoyang
    Zhang, Xuehai
    Duan, Haiyang
    Gao, Jionghao
    Li, Na
    Su, Pingping
    Xie, Huiling
    Li, Weihua
    Fu, Zhiyuan
    Huang, Yubi
    Tang, Jihua
    PLANT BIOTECHNOLOGY JOURNAL, 2022, 20 (06) : 1042 - 1053
  • [24] Genome-wide association study of maize plant architecture using F1 populations
    Zhao, Yang
    Wang, Hengsheng
    Bo, Chen
    Dai, Wei
    Zhang, Xingen
    Cai, Ronghao
    Gu, Longjiang
    Ma, Qing
    Jiang, Haiyang
    Zhu, Jun
    Cheng, Beijiu
    PLANT MOLECULAR BIOLOGY, 2019, 99 (1-2) : 1 - 15
  • [25] Genome-Wide Association Study Reveals Novel QTLs and Candidate Genes for Grain Number in Rice
    Li, Peiyuan
    Li, Qing
    Lu, Xueli
    Dai, Liping
    Yang, Long
    Hong, Yifeng
    Yan, Tiancai
    Shen, Lan
    Zhang, Qiang
    Ren, Deyong
    Zhu, Li
    Hu, Jiang
    Dong, Guojun
    Zhang, Guangheng
    Qian, Qian
    Zeng, Dali
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [26] Genetic basis underlying tiller angle in rice (Oryza sativa L.) by genome-wide association study
    Bai, Shaoxing
    Hong, Jun
    Su, Su
    Li, Zhikang
    Wang, Wensheng
    Shi, Jianxin
    Liang, Wanqi
    Zhang, Dabing
    PLANT CELL REPORTS, 2022, 41 (08) : 1707 - 1720
  • [27] Genome-wide association study of salt tolerance at the seed germination stage in rice
    Shi, Yingyao
    Gao, Lingling
    Wu, Zhichao
    Zhang, Xiaojing
    Wang, Mingming
    Zhang, Congshun
    Zhang, Fan
    Zhou, Yongli
    Li, Zhikang
    BMC PLANT BIOLOGY, 2017, 17
  • [28] Genome-Wide Association Study Reveals the Genetic Architecture of Seed Vigor in Oats
    Huang, Ching-Ting
    Klos, Kathy Esvelt
    Huang, Yung-Fen
    G3-GENES GENOMES GENETICS, 2020, 10 (12): : 4489 - 4503
  • [29] Genetic Variability of Arabidopsis thaliana Mature Root System Architecture and Genome-Wide Association Study
    Deja-Muylle, Agnieszka
    Opdenacker, Davy
    Parizot, Boris
    Motte, Hans
    Lobet, Guillaume
    Storme, Veronique
    Clauw, Pieter
    Njo, Maria
    Beeckman, Tom
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [30] Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study
    Liu, Sheng
    Huang, Huibin
    Yi, Xinqi
    Zhang, Yuanyuan
    Yang, Qingyong
    Zhang, Chunyu
    Fan, Chuchuan
    Zhou, Yongming
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (06) : 1472 - 1484