Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study

被引:28
作者
Jiang, Su [1 ,2 ]
Wang, Dan [1 ]
Yan, Shuangyong [3 ]
Liu, Shiming [2 ]
Liu, Bin [4 ]
Kang, Houxiang [2 ]
Wang, Guo-Liang [2 ,5 ]
机构
[1] Hunan Agr Univ, Coll Agron, Changsha 410128, Hunan, Peoples R China
[2] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pest, Beijing 100193, Peoples R China
[3] Tianjin Acad Agr Sci, Tianjin Crop Res Inst, Tian Jin Key Lab Crop Genet Breeding, Tianjin 300112, Peoples R China
[4] Guangdong Acad Agr Sci, Rice Res Inst, Guangdong Key Lab New Technol Rice Breeding, Guangzhou 510640, Guangdong, Peoples R China
[5] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
Rice; Tiller number; Genome wide association study; Genetic architecture; Single nucleotide polymorphism; Linkage disequilibrium; Gene expression; PLANT ARCHITECTURE; AGRONOMIC TRAITS; RESISTANCE; PROTEIN; BIOSYNTHESIS; MUTATIONS; NUMBER; GROWTH; YIELD;
D O I
10.1186/s12284-019-0302-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
BackgroundRice tiller number (TN) is one of the most important components associated with rice grain yield. Around one hundred rice TN genes have been identified, but dissecting the genetic architecture of rice TN variations remains difficult because of its complex trait and control by both major genes and quantitative trait loci (QTLs).ResultsIn this study, we used a subset of the rice diversity population II (S-RDP-II), genotyped with 700,000 single nucleotide polymorphisms (SNPs), to identify the loci associated with tiller number variations (LATNs) through a genome-wide association study (GWAS). The analysis revealed that 23 LATNs are significantly associated with TN variations. Among the 23 LATNs, eight are co-localized with previously cloned TN genes, and the remaining 15 LATNs are novel. DNA sequence analysis of the 15 novel LATNs led to the identification of five candidate genes using the accessions with extreme TN phenotypes. Genetic variations in two of the genes are mainly located in the promoter regions. qRT-PCR analysis showed that the expression levels of these two genes are also closely associated with TN variations.ConclusionsWe identified 15 novel LATNs that contribute significantly to the genetic variation of rice TN. Of these 15, the five identified TN-associated candidate genes will enhance our understanding of rice tillering and can be used as molecular markers for improving rice yield.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number [J].
Alam, Md Mahfuz ;
Tanaka, Toru ;
Nakamura, Hidemitsu ;
Ichikawa, Hiroaki ;
Kobayashi, Kappei ;
Yaeno, Takashi ;
Yamaoka, Naoto ;
Shimomoto, Kota ;
Takayama, Kotaro ;
Nishina, Hiroshige ;
Nishiguchi, Masamichi .
PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (01) :85-96
[2]   Co-suppressed glutamine synthetase2 gene modifies nitrogen metabolism and plant growth in rice [J].
Cai HongMei ;
Xiao JingHua ;
Zhang QiFa ;
Lian XingMing .
CHINESE SCIENCE BULLETIN, 2010, 55 (09) :823-833
[3]   Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice [J].
Chen, Qiaoling ;
Xie, Qingjun ;
Gao, Ju ;
Wang, Wenyi ;
Sun, Bo ;
Liu, Bohan ;
Zhu, Haitao ;
Peng, Haifeng ;
Zhao, Haibing ;
Liu, Changhong ;
Wang, Jiang ;
Zhang, Jingliu ;
Zhang, Guiquan ;
Zhang, Zemin .
JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (19) :6047-6058
[4]   Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis [J].
Deslauriers, Stephen D. ;
Alvarez, Ashley A. ;
Lacey, Randy F. ;
Binder, Brad M. ;
Larsen, Paul B. .
NEW PHYTOLOGIST, 2015, 208 (02) :442-455
[5]   A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars [J].
Dong, Haijiao ;
Zhao, Hu ;
Xie, Weibo ;
Han, Zhongmin ;
Li, Guangwei ;
Yao, Wen ;
Bai, Xufeng ;
Hu, Yong ;
Guo, Zilong ;
Lu, Kai ;
Yang, Lin ;
Xing, Yongzhong .
PLOS GENETICS, 2016, 12 (11)
[6]   Genome-wide association studies of 14 agronomic traits in rice landraces [J].
Huang, Xuehui ;
Wei, Xinghua ;
Sang, Tao ;
Zhao, Qiang ;
Feng, Qi ;
Zhao, Yan ;
Li, Canyang ;
Zhu, Chuanrang ;
Lu, Tingting ;
Zhang, Zhiwu ;
Li, Meng ;
Fan, Danlin ;
Guo, Yunli ;
Wang, Ahong ;
Wang, Lu ;
Deng, Liuwei ;
Li, Wenjun ;
Lu, Yiqi ;
Weng, Qijun ;
Liu, Kunyan ;
Huang, Tao ;
Zhou, Taoying ;
Jing, Yufeng ;
Li, Wei ;
Lin, Zhang ;
Buckler, Edward S. ;
Qian, Qian ;
Zhang, Qi-Fa ;
Li, Jiayang ;
Han, Bin .
NATURE GENETICS, 2010, 42 (11) :961-U76
[7]   Suppression of tiller bud activity in tillering dwarf mutants of rice [J].
Ishikawa, S ;
Maekawa, M ;
Arite, T ;
Onishi, K ;
Takamure, I ;
Kyozuka, J .
PLANT AND CELL PHYSIOLOGY, 2005, 46 (01) :79-86
[8]   DWARF 53 acts as a repressor of strigolactone signalling in rice [J].
Jiang, Liang ;
Liu, Xue ;
Xiong, Guosheng ;
Liu, Huihui ;
Chen, Fulu ;
Wang, Lei ;
Meng, Xiangbing ;
Liu, Guifu ;
Yu, Hong ;
Yuan, Yundong ;
Yi, Wei ;
Zhao, Lihua ;
Ma, Honglei ;
He, Yuanzheng ;
Wu, Zhongshan ;
Melcher, Karsten ;
Qian, Qian ;
Xu, H. Eric ;
Wang, Yonghong ;
Li, Jiayang .
NATURE, 2013, 504 (7480) :401-+
[9]   Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae [J].
Kang, Houxiang ;
Wang, Yue ;
Peng, Shasha ;
Zhang, Yanli ;
Xiao, Yinghui ;
Wang, Dan ;
Qu, Shaohong ;
Li, Zhiqiang ;
Yan, Shuangyong ;
Wang, Zhilong ;
Liu, Wende ;
Ning, Yuese ;
Korniliev, Pavel ;
Leung, Hei ;
Mezey, Jason ;
McCouch, Susan R. ;
Wang, Guo-Liang .
MOLECULAR PLANT PATHOLOGY, 2016, 17 (06) :959-972
[10]   PLASTOCHRON2 regulates leaf initiation and maturation in rice [J].
Kawakatsu, T ;
Itoh, J ;
Miyoshi, K ;
Kurata, N ;
Alvarez, N ;
Veit, B ;
Nagato, Y .
PLANT CELL, 2006, 18 (03) :612-625