Lumps and rouge waves for a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics

被引:0
|
作者
Yin, Ying
Tian, Bo [1 ]
Chai, Han-Peng
Yuan, Yu-Qiang
Du, Zhong
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 03期
基金
中国国家自然科学基金;
关键词
Fluid mechanics; (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation; lump wave; rogue wave; fusion and fission phenomena; BACKLUND TRANSFORMATION; SCHRODINGER-EQUATIONS; KINK SOLUTIONS; SHALLOW-WATER; SOLITONS; SYSTEM; COLLISIONS; DYNAMICS; FIBER; PAIR;
D O I
10.1007/s12043-018-1609-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a -dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the long water waves and small-amplitude surface waves with the weak nonlinearity, weak dispersion and weak perturbation in fluid mechanics, is investigated. Lump, lump-soliton and rouge-soliton solutions are obtained with the aid of symbolic computation. For the lump and soliton, amplitudes are related to the nonlinearity coefficient and dispersion coefficient, while velocities are related to the perturbation coefficients. Fusion and fission phenomena between the lump and soliton are observed, respectively. Graphic analysis shows that: (i) soliton's amplitude becomes larger after the fusion interaction, and becomes smaller after the fission interaction; (ii) after the interaction, the soliton propagates along the opposite direction to before when any one of the perturbation coefficients is a time-dependent function. For the interactions between the rogue wave and two solitons, the rogue wave splits from one soliton and merges into the other one, and the two solitons exchange the amplitudes through the energy transfer by the rogue wave.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Hybrid-wave solutions for a (2<bold>+</bold>1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics
    Zhao, Yu
    Tian, Bo
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [32] On the study of dynamical wave's nature to generalized (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation: application in the plasma and fluids
    Ismael, Hajar F.
    Sulaiman, Tukur Abdulkadir
    Nabi, Harivan R.
    Younas, Usman
    NONLINEAR DYNAMICS, 2024, : 2653 - 2665
  • [33] A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation
    Wazwaz, Abdul-Majid
    El-Tantawy, S. A.
    NONLINEAR DYNAMICS, 2016, 84 (02) : 1107 - 1112
  • [34] Multiple rogue wave solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Lu, Qingchen
    Ilhan, Onur Alp
    Manafian, Jalil
    Avazpour, Laleh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (07) : 1457 - 1473
  • [35] Lumps and rouge waves for a (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics
    Ying Yin
    Bo Tian
    Han-Peng Chai
    Yu-Qiang Yuan
    Zhong Du
    Pramana, 2018, 91 (3)
  • [36] Magnetooptic Studies on a Ferromagnetic Material via an Extended (3+1)-Dimensional Variable-Coefficient Modified Kadomtsev-Petviashvili System
    Xin-Yi Gao
    Yong-Jiang Guo
    Wen-Rui Shan
    Zhong Du
    Yu-Qi Chen
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [37] Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation
    Wu, Xue-Sha
    Zhang, Hao-Miao
    Liu, Jian-Guo
    RESULTS IN PHYSICS, 2023, 51
  • [38] Cauchy matrix approach to the nonisospectral and variable-coefficient Kadomtsev-Petviashvili equation
    Zhou, Zhen
    Zhang, Xinyuan
    Shen, Tong
    Li, Chunxia
    THEORETICAL AND MATHEMATICAL PHYSICS, 2025, 222 (03) : 401 - 413
  • [39] Pfaffianization of a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation
    Meng, Xiang-Hua
    Xu, Xiao-Ge
    APPLIED MATHEMATICS LETTERS, 2013, 26 (06) : 612 - 616
  • [40] Semi-rational solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation in a plasma or fluid
    Yuan, Yu-Qiang
    Tian, Bo
    Liu, Lei
    Chai, Han-Peng
    Sun, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) : 2566 - 2574