On the geometric quantization of Jacobi manifolds

被引:21
作者
deLeon, M [1 ]
Marrero, JC [1 ]
Padron, E [1 ]
机构
[1] UNIV LA LAGUNA, FAC MATEMAT, DEPT MATEMAT FUNDAMENTAL, E-38207 San Cristobal la Laguna, TENERIFE, SPAIN
关键词
D O I
10.1063/1.532207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometric quantization of Jacobi manifolds is discussed. A natural cohomology (termed Lichnerowicz-Jacobi) on a Jacobi manifold is introduced, and using it the existence of prequantization bundles is characterized. To do this, a notion of contravariant derivatives is used, in such a way that the procedure developed by Vaisman for Poisson manifolds is naturally extended. A notion of polarization is discussed and the quantization problem is studied. The existence of prequantization representations is also considered. (C) 1997 American Institute of Physics.
引用
收藏
页码:6185 / 6213
页数:29
相关论文
共 52 条
[1]  
Albert C., 1989, J. Geom. Phys., V6, P627, DOI DOI 10.1016/0393-0440(89)90029-6
[2]  
[Anonymous], 1993, HAMILTONIAN MECH SYS
[3]   CALCULUS ON POISSON MANIFOLDS [J].
BHASKARA, KH ;
VISWANATH, K .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :68-72
[4]  
BHASKARA KH, 1984, RES NOTES MATH, V174
[5]  
Blair D. E., 1976, Lectures Notes in Mathematics, V509
[6]   GRADIENT VECTOR-FIELDS ON COSYMPLECTIC MANIFOLDS [J].
CANTRIJN, F ;
DELEON, M ;
LACOMBA, EA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (01) :175-188
[7]   Prequantizable Poisson manifolds and Jacobi structures [J].
Chinea, D ;
Marrero, JC ;
deLeon, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19) :6313-6324
[8]  
COSTE A, 1987, GROUPOIDES SYMPLEC A, V2, P1
[9]  
DAZORD P, 1991, J MATH PURE APPL, V70, P101
[10]  
DAZORD P, 1995, CR ACAD SCI I-MATH, V320, P959