Multi-city comparative PM2.5 source apportionment for fifteen sites in Europe: The ICARUS project

被引:35
作者
Saraga, D. [1 ]
Maggos, T. [1 ]
Degrendele, C. [2 ]
Klanova, J. [2 ]
Horvat, M. [3 ]
Kocman, D. [3 ]
Kanduc, T. [3 ]
Garcia Dos Santos, S. [4 ]
Franco, R. [4 ]
Morillo Gomez, P. [4 ]
Manousakas, M. [5 ,7 ]
Bairachtari, K. [1 ]
Eleftheriadis, K. [5 ]
Kermenidou, M. [6 ]
Karakitsios, S. [6 ]
Gotti, A. [6 ]
Sarigiannis, D. [6 ]
机构
[1] Natl Ctr Sci Res Demokritos, Atmospher Chem & Innovat Technol Lab, Athens 15310, Greece
[2] Masaryk Univ, RECETOX Ctr, Kamenice 5, Brno 62500, Czech Republic
[3] Jozef Stefan Inst, Dept Environm Sci, Jamova 39, Ljubljana 1000, Slovenia
[4] Inst Salud Carlos III, Ctr Nacl Sanidad Ambiental, Area Contaminac Atmosfer, Ctra Majadahonda Pozuelo, Madrid 28220, Spain
[5] Natl Ctr Sci Res Demokritos, Environm Radioact Lab, Athens 15310, Greece
[6] Aristotle Univ Thessaloniki AUTH, Dept Chem Engn, Environm Engn Lab, Thessaloniki 54124, Greece
[7] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
关键词
Particulate matter; Chemical composition; Positive Matrix Factorization; Source apportionment; Multi-city study; Sources homogeneity; POSITIVE MATRIX FACTORIZATION; PARTICULATE MATTER; CHEMICAL-COMPOSITION; URBAN AREA; PM10; AEROSOL; THESSALONIKI; UNCERTAINTY; PARTICLES; MODEL;
D O I
10.1016/j.scitotenv.2020.141855
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
PM(2.)5 is an air pollution metric widely used to assess air quality, with the European Union having set targets for reduction in PM2.5 levels and population exposure. A major challenge for the scientific community is to identify, quantify and characterize the sources of atmospheric particles in the aspect of proposing effective control strategies. In the frame of ICARUS EU2020 project, a comprehensive database including PM2.5 concentration and chemical composition (ions, metals, organic/elemental carbon, Polycyclic Aromatic Hydrocarbons) from three sites (traffic, urban background, rural) of five European cities (Athens, Brno, Ljubljana, Madrid, Thessaloniki) was created. The common and synchronous sampling (two seasons involved) and analysis procedure offered the prospect of a harmonized Positive Matrix Factorization model approach, with the scope of identifying the similarities and differences of PM2.5 key-source chemical fingerprints across the sampling sites. The results indicated that the average contribution of traffic exhausts to PM2.5 concentration was 23.3% (traffic sites), 13.3% (urban background sites) and 8.8% (rural sites). The average contribution of traffic non-exhausts was 12.6% (traffic), 13.5% (urban background) and 6.1% (rural sites). The contribution of fuel oil combustion was 3.8% at traffic, 11.6% at urban background and 18.7% at rural sites. Biomass burning contribution was 22% at traffic sites, 30% at urban background sites and 28% at rural sites. Regarding soil dust, the average contribution was 5% and 8% at traffic and urban background sites respectively and 16% at rural sites. Sea salt contribution was low (1-4%) while secondary aerosols corresponded to the 16-34% of PM2.5. The homogeneity of the chemical profiles as well as their relationship with prevailing meteorological parameters were investigated. The results showed that fuel oil combustion, traffic non-exhausts and soil dust profiles are considered as dissimilar while biomass burning, sea salt and traffic exhaust can be characterized as relatively homogenous among the sites. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Seasonal and spatial variability of secondary inorganic aerosols in PM2.5 at Agra: Source apportionment through receptor models [J].
Agarwal, Awni ;
Satsangi, Aparna ;
Lakhani, Anita ;
Kumari, K. Maharaj .
CHEMOSPHERE, 2020, 242
[2]   Source apportionment of indoor PM10 in Elderly Care Centre [J].
Almeida-Silva, M. ;
Faria, T. ;
Saraga, D. ;
Maggos, T. ;
Wolterbeek, H. T. ;
Almeida, S. M. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (08) :7814-7827
[3]   Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2 [J].
Amato, F. ;
Pandolfi, M. ;
Escrig, A. ;
Querol, X. ;
Alastuey, A. ;
Pey, J. ;
Perez, N. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (17) :2770-2780
[4]   AIRUSE-LIFE plus : a harmonized PM speciation and source apportionment in five southern European cities [J].
Amato, Fulvio ;
Alastuey, Andres ;
Karanasiou, Angeliki ;
Lucarelli, Franco ;
Nava, Silvia ;
Calzolai, Giulia ;
Severi, Mirko ;
Becagli, Silvia ;
Gianelle, Vorne L. ;
Colombi, Cristina ;
Alves, Celia ;
Custodio, Danilo ;
Nunes, Teresa ;
Cerqueira, Mario ;
Pio, Casimiro ;
Eleftheriadis, Konstantinos ;
Diapouli, Evangelia ;
Reche, Cristina ;
Cruz Minguillon, Maria ;
Manousakas, Manousos-Ioannis ;
Maggos, Thomas ;
Vratolis, Stergios ;
Harrison, Roy M. ;
Querol, Xavier .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (05) :3289-3309
[5]  
[Anonymous], 2017, 16909 EN
[6]  
[Anonymous], 2016, Press release
[7]   Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process [J].
Argyropoulos, G. ;
Samara, C. ;
Diapouli, E. ;
Eleftheriadis, K. ;
Papaoikonomou, K. ;
Kungolos, A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 601 :906-917
[8]   Source apportionment of the redox activity of urban quasi-ultrafine particles (PM0.49) in Thessaloniki following the increased biomass burning due to the economic crisis in Greece [J].
Argyropoulos, Georgios ;
Besis, Athanasios ;
Voutsa, Dimitra ;
Samara, Constantini ;
Sowlat, Mohammad Hossein ;
Hasheminassab, Sina ;
Sioutas, Constantinos .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 568 :124-136
[9]  
Bahreini R., 2012, Geophys. Res. Lett, V39, pL06805
[10]   A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises [J].
Belis, C. A. ;
Karagulian, F. ;
Amato, F. ;
Almeida, M. ;
Artaxo, P. ;
Beddows, D. C. S. ;
Bernardoni, V. ;
Bove, M. C. ;
Carbone, S. ;
Cesari, D. ;
Contini, D. ;
Cuccia, E. ;
Diapouli, E. ;
Eleftheriadis, K. ;
Favez, O. ;
El Haddad, I. ;
Harrison, R. M. ;
Hellebust, S. ;
Hovorka, J. ;
Jang, E. ;
Jorquera, H. ;
Kammermeier, T. ;
Karl, M. ;
Lucarelli, F. ;
Mooibroek, D. ;
Nava, S. ;
Nojgaard, J. K. ;
Paatero, P. ;
Pandolfi, M. ;
Perrone, M. G. ;
Petit, J. E. ;
Pietrodangelo, A. ;
Pokorna, P. ;
Prati, P. ;
Prevot, A. S. H. ;
Quass, U. ;
Querol, X. ;
Saraga, D. ;
Sciare, J. ;
Sfetsos, A. ;
Valli, G. ;
Vecchi, R. ;
Vestenius, M. ;
Yubero, E. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2015, 123 :240-250