Tensor Kernel Recovery for Discrete Spatio-Temporal Hawkes Processes

被引:0
作者
Sheen, Heejune [1 ]
Zhu, Xiaonan [2 ]
Xie, Yao [3 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06511 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Hawkes process; spatio-temporal data; low-rank tensor; transformed tensor nuclear norm; convex optimization; MODELS;
D O I
10.1109/TSP.2022.3229642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a new discrete spatio-temporal Hawkes process model by formulating the general influence of the Hawkes process as a tensor kernel. Based on the low-rank structure assumption of the tensor kernel, we cast the estimation of the tensor kernel as a convex optimization problem using the Fourier transformed nuclear norm. We provide theoretical performance guarantees for our approach and present an algorithm to solve the optimization problem. In particular, our upper bound of squared estimation error has the convergence rate of $O(lnK/\sqrt{K})$, where $K$ is the number of samples in the time horizon. The efficiency of our estimation is demonstrated with numerical simulations on synthetic data and the analysis of real-world data from Atlanta burglary incidents.
引用
收藏
页码:5859 / 5870
页数:12
相关论文
共 50 条
  • [21] Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes
    Chu, Tingjin
    Liu, Jialuo
    Zhu, Jun
    Wang, Haonan
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (02): : 689 - 713
  • [22] Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes
    Han, Lifeng
    He, Changhan
    Dinh, Huy
    Fricks, John
    Kuang, Yang
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (07)
  • [23] Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes
    Lifeng Han
    Changhan He
    Huy Dinh
    John Fricks
    Yang Kuang
    [J]. Bulletin of Mathematical Biology, 2022, 84
  • [24] A regression strategy for analyzing environmental data generated by spatio-temporal processes
    Steele, BM
    Reddy, SK
    Nemani, RR
    [J]. ECOLOGICAL MODELLING, 2005, 181 (2-3) : 93 - 108
  • [25] SIMULATING NONSTATIONARY SPATIO-TEMPORAL POISSON PROCESSES USING THE INVERSION METHOD
    Zhang, Haoting
    Zheng, Zeyu
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 492 - 503
  • [26] A Detailed View on the Spatio-Temporal Information Content and the Arithmetic Coding of Discrete Trajectories
    Markus Koegel
    Matthias Radig
    Erzen Hyko
    Martin Mauve
    [J]. Mobile Networks and Applications, 2013, 18 : 373 - 388
  • [27] Virtualized Traffic: Reconstructing Traffic Flows from Discrete Spatio-Temporal Data
    van den Berg, Jur
    Sewall, Jason
    Lin, Ming
    Manocha, Dinesh
    [J]. IEEE VIRTUAL REALITY 2009, PROCEEDINGS, 2009, : 183 - 190
  • [28] STVANet: A spatio-temporal visual attention framework with large kernel attention mechanism for citywide traffic dynamics prediction
    Yang, Hongtai
    Jiang, Junbo
    Zhao, Zhan
    Pan, Renbin
    Tao, Siyu
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254
  • [29] A Detailed View on the Spatio-Temporal Information Content and the Arithmetic Coding of Discrete Trajectories
    Koegel, Markus
    Radig, Matthias
    Hyko, Erzen
    Mauve, Martin
    [J]. MOBILE NETWORKS & APPLICATIONS, 2013, 18 (03) : 373 - 388
  • [30] Moments for Hawkes Processes with Gamma Decay Kernel Functions
    Lirong Cui
    Bei Wu
    Juan Yin
    [J]. Methodology and Computing in Applied Probability, 2022, 24 : 1565 - 1601