Tensor Kernel Recovery for Discrete Spatio-Temporal Hawkes Processes

被引:0
|
作者
Sheen, Heejune [1 ]
Zhu, Xiaonan [2 ]
Xie, Yao [3 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06511 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Hawkes process; spatio-temporal data; low-rank tensor; transformed tensor nuclear norm; convex optimization; MODELS;
D O I
10.1109/TSP.2022.3229642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a new discrete spatio-temporal Hawkes process model by formulating the general influence of the Hawkes process as a tensor kernel. Based on the low-rank structure assumption of the tensor kernel, we cast the estimation of the tensor kernel as a convex optimization problem using the Fourier transformed nuclear norm. We provide theoretical performance guarantees for our approach and present an algorithm to solve the optimization problem. In particular, our upper bound of squared estimation error has the convergence rate of $O(lnK/\sqrt{K})$, where $K$ is the number of samples in the time horizon. The efficiency of our estimation is demonstrated with numerical simulations on synthetic data and the analysis of real-world data from Atlanta burglary incidents.
引用
收藏
页码:5859 / 5870
页数:12
相关论文
共 50 条
  • [1] Context-aware spatio-temporal event prediction via convolutional Hawkes processes
    Okawa, Maya
    Iwata, Tomoharu
    Tanaka, Yusuke
    Kurashima, Takeshi
    Toda, Hiroyuki
    Kashima, Hisashi
    MACHINE LEARNING, 2022, 111 (08) : 2929 - 2950
  • [2] Context-aware spatio-temporal event prediction via convolutional Hawkes processes
    Maya Okawa
    Tomoharu Iwata
    Yusuke Tanaka
    Takeshi Kurashima
    Hiroyuki Toda
    Hisashi Kashima
    Machine Learning, 2022, 111 : 2929 - 2950
  • [3] Flexible spatio-temporal Hawkes process models for earthquake occurrences
    Kwon, Junhyeon
    Zheng, Yingcai
    Jun, Mikyoung
    SPATIAL STATISTICS, 2023, 54
  • [4] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [5] Spatio-Temporal Tensor Sketching via Adaptive Sampling
    Ma, Jing
    Zhang, Qiuchen
    Ho, Joyce C.
    Xiong, Li
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 490 - 506
  • [6] Multivariate Kalman filtering for spatio-temporal processes
    Ferreira, Guillermo
    Mateu, Jorge
    Porcu, Emilio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4337 - 4354
  • [7] A changepoint analysis of spatio-temporal point processes
    Altieri, Linda
    Scott, E. Marian
    Cocchi, Daniela
    Illian, Janine B.
    SPATIAL STATISTICS, 2015, 14 : 197 - 207
  • [8] Mark variograms for spatio-temporal point processes
    Stoyan, Dietrich
    Rodriguez-Cortes, Francisco J.
    Mateu, Jorge
    Gille, Wilfried
    SPATIAL STATISTICS, 2017, 20 : 125 - 147
  • [9] A kernel-enriched order-dependent nonparametric spatio-temporal process
    Das, Moumita
    Bhattacharya, Sourabh
    SPATIAL STATISTICS, 2023, 55
  • [10] Adaptive kernel smoothing regression for spatio-temporal environmental datasets
    Pouzols, Federico Montesino
    Lendasse, Amaury
    NEUROCOMPUTING, 2012, 90 : 59 - 65