Backward stochastic differential equations and its application to stochastic control

被引:0
作者
Veverka, Petr [1 ,2 ]
机构
[1] Acad Sci Czech Republic, Inst Informat Theory & Automat, Dept Econometry, Vodarenskou Vezi 4, Prague 8, Czech Republic
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague 1, Czech Republic
来源
SPSM 2010: STOCHASTIC AND PHYSICAL MONITORING SYSTEMS | 2010年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce the concept of Backward Stochastic Differential Equations (BSDE), provide fundamental theorems of existence and uniqueness of the solution for some essential cases and we show by example its important connections to financial mathematics. Finally, we focus on vast applications of BSDE to stochastic control via Pontryagin's maximum principle.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 10 条
[1]   Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance (vol 121, pg 94, 2004) [J].
Framstad, NC ;
Oksendal, B ;
Sulem, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (02) :511-512
[2]   Sufficient Stochastic maximum principle for the optimal control of jump diffusions and applications to finance [J].
Framstad, NC ;
Oksendal, B ;
Sulem, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 121 (01) :77-98
[3]  
Karatzas I., 1988, Graduate text in mathematics
[4]   Chaotic and predictable representations for Levy processes [J].
Nualart, D ;
Schoutens, W .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (01) :109-122
[5]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[6]   A GENERAL STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL-CONTROL PROBLEMS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :966-979
[7]  
Protter P., 1990, Stochastic Integration and Differential Equations
[9]  
Tankov P., 2009, JUMP DIFFUSION MODEL
[10]  
Zheng S., INFINITE TIME INTERV