Pump frequency noise coupling into a microcavity by thermo-optic locking

被引:15
作者
Li, Jiang [1 ]
Diddams, Scott [2 ]
Vahala, Kerry J. [1 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] NIST, Div Time & Frequency, Boulder, CO 80305 USA
基金
美国国家科学基金会;
关键词
LASER;
D O I
10.1364/OE.22.014559
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As thermo-optic locking is widely used to establish a stable frequency detuning between an external laser and a high Q microcavity, it is important to understand how this method affects microcavity temperature and frequency fluctuations. A theoretical analysis of the laser-microcavity frequency fluctuations is presented and used to find the spectral dependence of the suppression of laser-microcavity, relative frequency noise caused by thermo-optic locking. The response function is that of a high-pass filter with a bandwidth and low-frequency suppression that increase with input power. The results are verified using an external-cavity diode laser and a silica disk resonator. The locking of relative frequency fluctuations causes temperature fluctuations within the microcavity that transfer pump frequency noise onto the microcavity modes over the thermal locking bandwidth. This transfer is verified experimentally. These results are important to investigations of noise properties in many nonlinear microcavity experiments in which low-frequency, optical-pump frequency noise must be considered. (C) 2014 Optical Society of America
引用
收藏
页码:14559 / 14567
页数:9
相关论文
共 20 条
[1]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[2]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[3]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[4]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105
[5]   A picogram- and nanometre-scale photonic-crystal optomechanical cavity [J].
Eichenfield, Matt ;
Camacho, Ryan ;
Chan, Jasper ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 459 (7246) :550-U79
[6]   Nonstationary nonlinear effects in optical microspheres [J].
Fomin, AE ;
Gorodetsky, ML ;
Grudinin, IS ;
Ilchenko, VS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (02) :459-465
[7]   Ultimate Q of optical microsphere resonators [J].
Gorodetsky, ML ;
Savchenkov, AA ;
Ilchenko, VS .
OPTICS LETTERS, 1996, 21 (07) :453-455
[8]  
Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/nphoton.2013.343, 10.1038/NPHOTON.2013.343]
[9]  
Il'chenko VS, 1992, LASER PHYS, V2, P1004
[10]   Cavity optomechanics: Back-action at the mesoscale [J].
Kippenberg, T. J. ;
Vahala, K. J. .
SCIENCE, 2008, 321 (5893) :1172-1176