Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure

被引:19
作者
Ros, Beata [1 ]
Bijma, Fetsje [1 ]
de Munck, Jan C. [2 ]
de Gunst, Mathisca C. M. [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Exact Sci, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Med Ctr, Dept Phys & Med Technol, NL-1081 HZ Amsterdam, Netherlands
关键词
Matrix normal model; Covariance matrix; Kronecker product structure; Maximum likelihood estimation; Existence and uniqueness of estimator;
D O I
10.1016/j.jmva.2015.05.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with multivariate Gaussian models for which the covariance matrix is a Kronecker product of two matrices. We consider maximum likelihood estimation of the model parameters, in particular of the coVariance matrix. There is no explicit expression for the maximum likelihood estimator of a Kronecker product covariance matrix. We investigate whether the maximum likelihood estimator of the covariance matrix exists and whether it is unique. We consider models with general, with double diagonal, and with one diagonal Kronecker product covariance matrices, and find different results. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 26 条
  • [1] TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION
    Allen, Genevera I.
    Tibshirani, Robert
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (02) : 764 - 790
  • [2] Anderson T. W., 1962, INTRO MULTIVARIATE S
  • [3] The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products
    Bijma, F
    de Munck, JC
    Heethaar, RM
    [J]. NEUROIMAGE, 2005, 27 (02) : 402 - 415
  • [4] The coupled dipole model:: an integrated model for multiple MEG/EEG data sets
    Bijma, F
    de Munck, JC
    Böcker, KBE
    Huizenga, HM
    Heethaar, RM
    [J]. NEUROIMAGE, 2004, 23 (03) : 890 - 904
  • [5] ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    BURG, JP
    LUENBERGER, DG
    WENGER, DL
    [J]. PROCEEDINGS OF THE IEEE, 1982, 70 (09) : 963 - 974
  • [6] Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporally correlated background noise
    de Munck, JC
    Huizenga, HM
    Waldorp, LJ
    Heethaar, RM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1565 - 1572
  • [7] Dutilleul P, 1996, ENVIRONMETRICS, V7, P551, DOI 10.1002/(SICI)1099-095X(199611)7:6<551::AID-ENV233>3.0.CO
  • [8] 2-9
  • [9] The MLE algorithm for the matrix normal distribution
    Dutilleul, P
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (02) : 105 - 123
  • [10] Horn R. A., 1991, TOPICS MATRIX ANAL