Nonparametric density estimation in compound Poisson processes using convolution power estimators

被引:10
|
作者
Comte, Fabienne [1 ]
Duval, Celine [1 ]
Genon-Catalot, Valentine [1 ]
机构
[1] Univ Paris 05, Sorbonne Paris Cite, UMR CNRS 8145, MAP5, Paris, France
关键词
Convolution; Compound Poisson process; Inverse problem; Nonparametric estimation; Parameter estimation; JUMP LEVY PROCESSES; HIGH-FREQUENCY DATA; INFERENCE; SUMS;
D O I
10.1007/s00184-013-0475-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a compound Poisson process which is discretely observed with sampling interval until exactly nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of th convolution powers density. The -risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 24 条
  • [1] Nonparametric density estimation in compound Poisson processes using convolution power estimators
    Fabienne Comte
    Céline Duval
    Valentine Genon-Catalot
    Metrika, 2014, 77 : 163 - 183
  • [2] Density estimation for compound Poisson processes from discrete data
    Duval, Celine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 3963 - 3986
  • [3] NONPARAMETRIC ESTIMATION FOR COMPOUND POISSON PROCESSES ON COMPACT LIE GROUPS
    Said, S.
    le Bihan, N.
    Laueman, C.
    Manton, J. H.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3409 - +
  • [4] Moment estimators for the parameters of Ornstein-Uhlenbeck processes driven by compound Poisson processes
    Wu, Yanfeng
    Hu, Jianqiang
    Zhang, Xinsheng
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2019, 29 (01): : 57 - 77
  • [5] Efficient nonparametric inference for discretely observed compound Poisson processes
    Alberto J. Coca
    Probability Theory and Related Fields, 2018, 170 : 475 - 523
  • [6] Efficient nonparametric inference for discretely observed compound Poisson processes
    Coca, Alberto J.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) : 475 - 523
  • [7] Estimation of the Jump Size Density in a Mixed Compound Poisson Process
    Comte, Fabienne
    Duval, Celine
    Genon-Catalot, Valentine
    Kappus, Johanna
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 1023 - 1044
  • [8] Poisson limits and nonparametric estimation for pairwise interaction point processes
    Chang, WB
    Gubner, JA
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (01) : 252 - 260
  • [9] On the superposition of overlapping Poisson processes and nonparametric estimation of their intensity function
    Gilardoni, Gustavo L.
    Colosimo, Enrico A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (09) : 3075 - 3083
  • [10] Moment estimators for the parameters of Ornstein-Uhlenbeck processes driven by compound Poisson processes
    Yanfeng Wu
    Jianqiang Hu
    Xinsheng Zhang
    Discrete Event Dynamic Systems, 2019, 29 : 57 - 77