The Rigidity of Hypersurfaces in Euclidean Space

被引:0
作者
Li, Chunhe [1 ]
Xu, Yanyan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Global rigidity; Infinitesimal rigidity; Energy method; Maximal principle;
D O I
10.1007/s11401-019-0143-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, the rigidity of hypersurfaces in Euclidean space is revisited. The Darboux equation is highlighted and two new proofs of the rigidity are given via energy method and maximal principle, respectively.
引用
收藏
页码:439 / 456
页数:18
相关论文
共 15 条
[1]  
Alexandrov Aleksandr, 1938, RECUEIL MATH MOSCOW, V4, P69
[2]  
[Anonymous], 2015, CONT MATH
[3]  
BLASCHKE W, 1924, VORLESUNGEN DIFFEREN, V1
[4]   Non-rigid enclosed surfaces [J].
Cohn-Vossen, S .
MATHEMATISCHE ANNALEN, 1930, 102 :10-29
[5]  
Dong G. C., 1993, J. Partial Differential Equations, V6, P62
[6]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF, V3
[7]   A proof of Alexandrov's uniqueness theorem for convex surfaces in R3 [J].
Guan, Pengfei ;
Wang, Zhizhang ;
Zhang, Xiangwen .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :329-336
[8]  
Han Q, 2006, MATH SURVEYS MONOGRA
[9]   Infinitesimal Rigidity of Convex Polyhedra through the Second Derivative of the Hilbert-Einstein Functional [J].
Izmestiev, Ivan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (04) :783-825
[10]  
Kobayashi S, 1995, CLASSICS MATH, V70