Solving two-dimensional Volterra-Fredholm integral equations of the second kind by using Bernstein polynomials

被引:9
作者
Dahaghin, M. Sh. [1 ,2 ]
Eskandari, Sh. [1 ,2 ]
机构
[1] Shahrekord Univ, Dept Math, Shahrekord, Iran
[2] Shaherkord Univ, Shaherkord, Iran
关键词
NUMERICAL-SOLUTION;
D O I
10.1007/s11766-017-3352-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a numerical method for solving two-dimensional Volterra-Fredholm integral equations of the second kind (2DV-FK2). Our method is based on approximating unknown function with Bernstein polynomials. We obtain an error bound for this method and employ the method on some numerical tests to show the efficiency of the method.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 28 条
[1]   On a method for solving a two-dimensional nonlinear integral equation of the second kind [J].
Abdou, M. A. ;
Badr, A. A. ;
Soliman, M. B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) :3589-3598
[2]   Numerical solution of a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations using multiquadric radial basis functions [J].
Almasieh, H. ;
Meleh, J. Nazari .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :173-179
[3]  
Atkinson KE., 1996, Cambridge Monographs on Applied and Computational Mathematics
[4]   Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind [J].
Avazzadeh, Zakieh ;
Heydari, Mohammad .
COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (01) :127-142
[5]   A numerical method for solving Fredholm-Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix [J].
Babolian, E. ;
Maleknejad, K. ;
Mordad, M. ;
Rahimi, B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) :3965-3971
[6]   Solutions of differential equations in a Bernstein polynomial basis [J].
Bhatti, M. Idrees ;
Bracken, P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :272-280
[7]  
Brunner, 2010, 7 LECTIRES THEORY NU
[8]   A fast iterative method for discretized Volterra-Fredholm integral equations [J].
Cardone, A ;
Messina, E ;
Russo, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :568-579
[9]   An adaptive method for Volterra-Fredholm integral equations on the half line [J].
Cardone, A. ;
Messina, E. ;
Vecchio, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (02) :538-547
[10]  
Chari M.V. K., 2000, NUMERICAL METHODS EL