Systems-level understanding of ethanol-induced stresses and adaptation in E. coli

被引:50
作者
Cao, Huansheng [1 ,2 ,3 ]
Wei, Du [1 ,2 ,4 ]
Yang, Yuedong [5 ]
Shang, Yu [1 ,2 ,4 ]
Li, Gaoyang [1 ,2 ,4 ]
Zhou, Yaoqi [5 ]
Ma, Qin [6 ,7 ]
Xu, Ying [1 ,2 ,3 ,4 ]
机构
[1] Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA
[2] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA
[3] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA
[4] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[5] Griffith Univ, Sch Informat & Commun Technol, Inst Glyc, Parklands Dr, Southport, Qld 4222, Australia
[6] South Dakota State Univ, Dept Agron Hort & Plant Sci, Brookings, SD 57007 USA
[7] BioSNTR, Brookings, SD 57007 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会; 英国医学研究理事会;
关键词
OXYGEN SPECIES PRODUCTION; ESCHERICHIA-COLI; HYDROGEN-PEROXIDE; FENTON REACTIONS; DATA SETS; TOLERANCE; GENE; IDENTIFICATION; EXPRESSION; MEMBRANE;
D O I
10.1038/srep44150
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding ethanol-induced stresses and responses in biofuel-producing bacteria at systems level has significant implications in engineering more efficient biofuel producers. We present a computational study of transcriptomic and genomic data of both ethanol-stressed and ethanol-adapted E. coli cells with computationally predicated ethanol-binding proteins and experimentally identified ethanol tolerance genes. Our analysis suggests: (1) ethanol damages cell wall and membrane integrity, causing increased stresses, particularly reactive oxygen species, which damages DNA and reduces the O-2 level; (2) decreased cross-membrane proton gradient from membrane damage, coupled with hypoxia, leads to reduced ATP production by aerobic respiration, driving cells to rely more on fatty acid oxidation, anaerobic respiration and fermentation for ATP production; (3) the reduced ATP generation results in substantially decreased synthesis of macromolecules; (4) ethanol can directly bind 213 proteins including transcription factors, altering their functions; (5) all these changes together induce multiple stress responses, reduced biosynthesis, cell viability and growth; and (6) ethanol-adapted E. coli cells restore the majority of these reduced activities through selection of specific genomic mutations and alteration of stress responses, ultimately restoring normal ATP production, macromolecule biosynthesis, and growth. These new insights into the energy and mass balance will inform design of more ethanol-tolerant strains.
引用
收藏
页数:15
相关论文
共 60 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [3] UniProt: a hub for protein information
    Bateman, Alex
    Martin, Maria Jesus
    O'Donovan, Claire
    Magrane, Michele
    Apweiler, Rolf
    Alpi, Emanuele
    Antunes, Ricardo
    Arganiska, Joanna
    Bely, Benoit
    Bingley, Mark
    Bonilla, Carlos
    Britto, Ramona
    Bursteinas, Borisas
    Chavali, Gayatri
    Cibrian-Uhalte, Elena
    Da Silva, Alan
    De Giorgi, Maurizio
    Dogan, Tunca
    Fazzini, Francesco
    Gane, Paul
    Cas-tro, Leyla Garcia
    Garmiri, Penelope
    Hatton-Ellis, Emma
    Hieta, Reija
    Huntley, Rachael
    Legge, Duncan
    Liu, Wudong
    Luo, Jie
    MacDougall, Alistair
    Mutowo, Prudence
    Nightin-gale, Andrew
    Orchard, Sandra
    Pichler, Klemens
    Poggioli, Diego
    Pundir, Sangya
    Pureza, Luis
    Qi, Guoying
    Rosanoff, Steven
    Saidi, Rabie
    Sawford, Tony
    Shypitsyna, Aleksandra
    Turner, Edward
    Volynkin, Vladimir
    Wardell, Tony
    Watkins, Xavier
    Zellner, Hermann
    Cowley, Andrew
    Figueira, Luis
    Li, Weizhong
    McWilliam, Hamish
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D204 - D212
  • [4] ALCOHOL-INDUCED CHANGES IN THE PHOSPHOLIPID MOLECULAR-SPECIES OF ESCHERICHIA-COLI
    BERGER, B
    CARTY, CE
    INGRAM, LO
    [J]. JOURNAL OF BACTERIOLOGY, 1980, 142 (03) : 1040 - 1044
  • [5] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [6] A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing
    Borden, Jacob R.
    Jones, Shawn W.
    Indurthi, Dinesh
    Chen, Yili
    Papoutsakis, Eleftherios Terry
    [J]. METABOLIC ENGINEERING, 2010, 12 (03) : 268 - 281
  • [7] DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis
    Boshoff, HIM
    Reed, MB
    Barry, CE
    Mizrahi, V
    [J]. CELL, 2003, 113 (02) : 183 - 193
  • [8] FINDSITELHM: A Threading-Based Approach to Ligand Homology Modeling
    Brylinski, Michal
    Skolnick, Jeffrey
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
  • [9] An integrated network approach identifies the isobutanol response network of Escherichia coli
    Brynildsen, Mark P.
    Liao, James C.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2009, 5
  • [10] CARTWRIGHT CP, 1986, J GEN MICROBIOL, V132, P369