Optimal estimation of the semi-group gradient of heat on the Heisenberg group

被引:53
作者
Li, Hong-Quan [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
D O I
10.1016/j.jfa.2006.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:369 / 394
页数:26
相关论文
共 25 条
[1]  
Ane C., 2000, Sur les inegalites de Sobolev logarithmiques
[2]   Riesz transform on manifolds and heat kernel regularity [J].
Auscher, P ;
Coulhon, T ;
Duong, XT ;
Hofmann, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06) :911-957
[3]  
BAKRY D, 1986, CR ACAD SCI I-MATH, V303, P23
[4]  
Bakry D., 1985, LECT NOTES MATH, V19, P145
[5]   Hamilton-Jacobi theory and the heat kernel on Heisenberg groups [J].
Beals, R ;
Gaveau, B ;
Greiner, PC .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :633-689
[6]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[7]   Riesz transform and related inequalities on noncompact Riemannian manifolds [J].
Coulhon, T ;
Duong, XT .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (12) :1728-1751
[8]  
Coulhon T, 2004, ARCH MATH, V83, P229, DOI 10.1007/s00013-004-1029-8
[9]   Hypoelliptic heat kernel inequalities on the Heisenberg group [J].
Driver, BK ;
Melcher, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) :340-365
[10]   REPRESENTATION FORMULAS AND WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS [J].
FRANCHI, B ;
LU, G ;
WHEEDEN, RL .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) :577-604