Optimal estimation of the semi-group gradient of heat on the Heisenberg group

被引:53
作者
Li, Hong-Quan [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
D O I
10.1016/j.jfa.2006.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:369 / 394
页数:26
相关论文
共 25 条
  • [1] Ane C., 2000, Sur les inegalites de Sobolev logarithmiques
  • [2] Riesz transform on manifolds and heat kernel regularity
    Auscher, P
    Coulhon, T
    Duong, XT
    Hofmann, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06): : 911 - 957
  • [3] BAKRY D, 1986, CR ACAD SCI I-MATH, V303, P23
  • [4] Bakry D., 1985, LECT NOTES MATH, V19, P145
  • [5] Hamilton-Jacobi theory and the heat kernel on Heisenberg groups
    Beals, R
    Gaveau, B
    Greiner, PC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07): : 633 - 689
  • [6] CHEEGER J, 1982, J DIFFER GEOM, V17, P15
  • [7] Riesz transform and related inequalities on noncompact Riemannian manifolds
    Coulhon, T
    Duong, XT
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (12) : 1728 - 1751
  • [8] Coulhon T, 2004, ARCH MATH, V83, P229, DOI 10.1007/s00013-004-1029-8
  • [9] Hypoelliptic heat kernel inequalities on the Heisenberg group
    Driver, BK
    Melcher, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) : 340 - 365
  • [10] REPRESENTATION FORMULAS AND WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS
    FRANCHI, B
    LU, G
    WHEEDEN, RL
    [J]. ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) : 577 - 604