Three-dimensional modeling of planar solid oxide fuel cells and the rib design optimization

被引:74
作者
Liu, Shixue [1 ,2 ,3 ,4 ]
Kong, Wei [2 ]
Lin, Zijing [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[4] Chinese Acad Sci, Key Lab Biofuels, Qingdao 266101, Peoples R China
基金
美国国家科学基金会;
关键词
Solid oxide fuel cell; Three dimensional; Interconnect rib; Contact resistance; Design optimization; INTERMEDIATE TEMPERATURE; SOFC STACK; DUSTY-GAS; ANODE; PERFORMANCE; ELECTROCHEMISTRY; POLARIZATION;
D O I
10.1016/j.jpowsour.2009.06.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three-dimensional (3D) multi-physics models of co-, counter- and cross-flow planar solid oxide fuel cell (SOFC) stack units are described. The models consider electronic conduction in the electrodes, ionic conduction in the electrolyte, mass transport in the porous electrodes and electrochemical reactions on the three phase boundaries. Based on the analysis of the ionic conducting equation for the thin electrolyte layer, a mathematically equivalent method is proposed to scale the electrolyte thickness with the corresponding change in the ionic conductivity to moderate the thin film effect in the meshing step and decrease the total number of degrees of freedom in the 3D numerical models. Examples of applications are given with typical physical fields illustrated and the characteristic features discussed for co-, counter and cross-flow designs. The 3D models are also used to optimize the rib widths in SOFC stacks as a function of interconnect-electrode contact resistance. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:854 / 863
页数:10
相关论文
共 32 条
[1]   Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J].
Aguiar, P ;
Adjiman, CS ;
Brandon, NP .
JOURNAL OF POWER SOURCES, 2004, 138 (1-2) :120-136
[2]  
[Anonymous], [No title captured], DOI DOI 10.1021/IE50677A007
[3]  
[Anonymous], 2004, Fuel Cell Handbook, V7
[4]   A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks [J].
Bi, Wuxi ;
Chen, Daifen ;
Lin, Zijing .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3873-3884
[5]   The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes [J].
Bieberle, A ;
Meier, LP ;
Gauckler, LJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :A646-A656
[6]   Modeling solid oxide fuel cell operation: Approaches, techniques and results [J].
Bove, Roberto ;
Ubertini, Stefano .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :543-559
[7]   Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes [J].
Chen, Daifen ;
Lin, Zijing ;
Zhu, Huayang ;
Kee, Robert J. .
JOURNAL OF POWER SOURCES, 2009, 191 (02) :240-252
[8]   Development and characterization of a high performance thin-film planar SOFC stack [J].
Chung, BW ;
Chervin, CN ;
Haslam, JJ ;
Pham, AQ ;
Glass, RS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A265-A269
[9]  
*COMS AB, 2007, COMS MULT VERS 3 4 U
[10]   Modeling of solid-oxide fuel cells [J].
Janardhanan, Vinod M. ;
Deutschmann, Olaf .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (04) :443-478