Toric degenerations of toric varieties and tropical curves

被引:141
作者
Nishinou, Takeo [1 ]
Siebert, Bernd
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068224, Japan
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
关键词
D O I
10.1215/S0012-7094-06-13511-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the counting of rational curves on a complete toric variety which are in general position relative to the toric prime divisors coincides with the counting of certain tropical curves. The proof is algebraic-geometric and relies on degeneration techniques and log deformation theory.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 25 条
[1]  
[Anonymous], CURRENT DEV MATH
[2]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[3]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[4]  
Fukaya K., 1997, ASIAN J MATH, V1, P96
[5]   Intersection theory on toric varieties [J].
Fulton, W ;
Sturmfels, B .
TOPOLOGY, 1997, 36 (02) :335-353
[6]  
Fulton W., 1997, Proceedings of Symposia in Pure Mathematics, V62, P45
[7]  
Givental A.B., 1996, Internat. Math. Res. Notices, V13, P613
[8]  
Gross M, 2006, J DIFFER GEOM, V72, P169
[9]  
Gross M., 2003, TURKISH J MATH, V27, P33
[10]  
Grothendieck A., 1971, LECT NOTES MATH, V224