Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator

被引:10
作者
Bodiya, T. [1 ]
Sudhir, V [2 ]
Wipf, C. [3 ]
Smith, N. [2 ]
Buikema, A. [2 ]
Kontos, A. [4 ]
Yu, H. [2 ]
Mavalvala, N. [2 ]
机构
[1] Lincoln Lab, Laser Applicat Grp, Lexington, MA 02474 USA
[2] MIT, LIGO Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[4] Bard Coll, Annandale On Hudson, NY 12504 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
RADIATION-PRESSURE; SLOW-LIGHT; OPTICAL BUFFERS; NOISE; RESONATORS;
D O I
10.1103/PhysRevA.100.013853
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical interferometers with suspended mirrors are the archetype of all current audio-frequency gravitational-wave detectors. The radiation pressure interaction between the motion of the mirrors and the circulating optical field in such interferometers represents a pristine form of light-matter coupling, largely due to 30 years of effort in developing high-quality optical materials with low mechanical dissipation. However, in all current suspended interferometers, the radiation pressure interaction is too weak to be useful as a resource, and too strong to be neglected. Here, we demonstrate a meter-long interferometer with suspended mirrors, of effective mass 125 g, where the radiation pressure interaction is enhanced by strong optical pumping to realize a cooperativity of 50. In conjunction with modest resolved-sideband operation, this regime is efficiently probed via optomechanically induced transparency of a weak on-resonant probe. The low resonant frequency and high-Q of the mechanical oscillator allows us to demonstrate transparency windows barely 100 mHz wide at room temperature. Together with a near-unity (approximate to 99.9%) Mout-coupling efficiency, our system saturates the theoretical delay-bandwidth product, rendering it an optical buffer capable of seconds-long storage times.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Quantum memory for photons [J].
Afzelius, Mikael ;
Gisin, Nicolas ;
De Riedmatten, Hugues .
PHYSICS TODAY, 2015, 68 (12) :42-47
[3]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[4]  
[Anonymous], T990025 LIGO
[5]  
[Anonymous], LIGOD04018
[6]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[7]   Quantum optomechanics [J].
Aspelmeyer, Markus ;
Meystre, Pierre ;
Schwab, Keith .
PHYSICS TODAY, 2012, 65 (07) :29-35
[8]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[9]  
BRAGINSKY VB, 1967, SOV PHYS JETP-USSR, V25, P653
[10]  
BRAGINSKY VB, 1968, SOV PHYS JETP-USSR, V26, P831