Optimal scaling of mala for nonlinear regression

被引:18
作者
Breyer, LA [1 ]
Piccioni, M
Scarlatti, S
机构
[1] Univ Lancaster, Dept Math & Stat, Fylge Coll, Lancaster LA1 4YF, England
[2] Univ G DAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Bayesian nonlinear regression; Markov chain Monte Carlo; Hastings-Metropolis; Langevin diffusion; propagation of chaos;
D O I
10.1214/105051604000000369
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We address the problem of simulating efficiently from the posterior distribution over the parameters of a particular class of nonlinear regression models using a Langevin-Metropolis sampler. It is shown that as the number N of parameters increases, the proposal variance must scale as N-1/3 in order to converge to a diffusion. This generalizes previous results of Roberts and Rosenthal [J. R. Stat. Soc. Ser B Stat. Methodol. 60 (1998) 255-268] for the i.i.d. case, showing the robustness of their analysis.
引用
收藏
页码:1479 / 1505
页数:27
相关论文
共 18 条
[1]  
Ben Arous G., 1990, Stoch. Stoch. Rep., V31, P79
[2]   From metropolis to diffusions: Gibbs states and optimal scaling [J].
Breyer, LA ;
Roberts, GO .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :181-206
[3]  
CHRISTENSEN OF, 2003, SCALING LIMITS TRANS
[4]   SANOV PROPERTY, GENERALIZED I-PROJECTION AND A CONDITIONAL LIMIT-THEOREM [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1984, 12 (03) :768-793
[5]   I-DIVERGENCE GEOMETRY OF PROBABILITY DISTRIBUTIONS AND MINIMIZATION PROBLEMS [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1975, 3 (01) :146-158
[6]  
Dembo A., 2010, Large Deviations Techniques and Applications
[7]  
Ethier S.N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[8]  
Kusuoka S., 1984, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V31, P223
[9]  
Neal RadfordM., 1996, Priors for Infinite Networks
[10]  
PETROV V.V., 1995, Limit Theorems of Probability Theory: Sequences of Independent Random Variables