Variational Construction of Diffusion Orbits for Positive Definite Lagrangians

被引:0
作者
Cheng, Chong-Qing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES | 2010年
基金
中国国家自然科学基金;
关键词
Tonelli Lagrangian; Action minimizing; Arnold diffusion; INTEGRABLE HAMILTONIAN-SYSTEMS; ARNOLD DIFFUSION; CONNECTING ORBITS; INVARIANT TORI; HOMOCLINIC ORBITS; AUBRY SETS; MINIMIZING MEASURES; MATHER THEORY; INSTABILITY; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this lecture, we sketch the variational construction of diffusion orbits in positive definite Lagrangian systems. Diffusion orbits constructed this way connects different Aubry sets, along which the action is locally minimized.
引用
收藏
页码:1714 / 1728
页数:15
相关论文
共 66 条
[1]  
Arnol'd V. I., 1988, ENCY MATH SCI, V3
[2]  
Arnold V. I., 1964, Sov. Math. Doklady, V5, P581
[3]  
Arnold V. I., 1963, Russian Mathematical Surveys, V18, P85, DOI [10.1070/RM1963v018n06ABEH001143, DOI 10.1070/RM1963V018N06ABEH001143]
[4]   MINIMAL GEODESICS [J].
BANGERT, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :263-286
[5]   GEODESIC RAYS, BUSEMANN FUNCTIONS AND MONOTONE TWIST MAPS [J].
BANGERT, V .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :49-63
[6]   Connecting orbits of time dependent Lagrangian systems [J].
Bernard, P .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) :1533-+
[7]   Homoclinic orbits to invariant sets of quasi-integrable exact maps [J].
Bernard, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :1583-1601
[8]   A generic property of families of Lagrangian systems [J].
Bernard, Patrick ;
Contreras, Gonzalo .
ANNALS OF MATHEMATICS, 2008, 167 (03) :1099-1108
[9]   The dynamics of pseudographs in convex Hamiltonian systems [J].
Bernard, Patrick .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :615-669
[10]  
Bernard P, 2007, DUKE MATH J, V136, P401