Locally conformally Kahler structures on unimodular Lie groups

被引:8
作者
Andrada, A. [1 ]
Origlia, M. [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM, RA-5000 Cordoba, Argentina
关键词
Hermitian metric; Locally conformally Kahler metric; Abelian complex structure; ABELIAN COMPLEX STRUCTURES; LEFT INVARIANT METRICS; NILMANIFOLDS; MANIFOLDS; GEOMETRY; SOLVMANIFOLDS; ALGEBRAS; EXAMPLES; TORSION;
D O I
10.1007/s10711-015-0076-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study left-invariant locally conformally Kahler structures on Lie groups, or equivalently, on Lie algebras. We give some properties of these structures in general, and then we consider the special cases when its complex structure is bi-invariant or abelian. In the former case, we show that no such Lie algebra is unimodular, while in the latter, we prove that if the Lie algebra is unimodular, then it is isomorphic to the product of and a Heisenberg Lie algebra.
引用
收藏
页码:197 / 216
页数:20
相关论文
共 38 条
[1]  
Alekseevsky D.V., 2014, ARXIV14033268
[2]   Abelian Hermitian geometry [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. G. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (05) :509-519
[3]   Classification of abelian complex structures on 6-dimensional Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 :232-255
[4]  
Barberis ML, 2009, MATH RES LETT, V16, P331
[5]  
Barberis ML, 2004, J LIE THEORY, V14, P25
[6]   Hyper-Kahler metrics conformal to left invariant metrics on four-dimensional Lie groups [J].
Barberis, ML .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (01) :1-8
[7]  
Boothby W.M., 1954, AM MATH J, V76, P509
[8]  
CORDERO LA, 1986, GEOMETRIAE DEDICATA, V21, P187
[9]   EXAMPLES OF 4-DIMENSIONAL COMPACT LOCALLY CONFORMAL KAHLER SOLVMANIFOLDS [J].
DEANDRES, LC ;
CORDERO, LA ;
FERNANDEZ, M ;
MENCIA, JJ .
GEOMETRIAE DEDICATA, 1989, 29 (02) :227-232
[10]   HyperKahler torsion structures invariant by nilpotent Lie groups [J].
Dotti, IG ;
Fino, A .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (03) :551-562